scholarly journals Democratization of fungal highway columns as a tool to investigate bacteria associated with soil fungi

2021 ◽  
Vol 97 (2) ◽  
Author(s):  
Pilar Junier ◽  
Guillaume Cailleau ◽  
Ilona Palmieri ◽  
Celine Vallotton ◽  
Olivia C Trautschold ◽  
...  

ABSTRACT Bacteria–fungi interactions (BFIs) are essential in ecosystem functioning. These interactions are modulated not only by local nutritional conditions but also by the physicochemical constraints and 3D structure of the environmental niche. In soils, the unsaturated and complex nature of the substrate restricts the dispersal and activity of bacteria. Under unsaturated conditions, some bacteria engage with filamentous fungi in an interaction (fungal highways) in which they use fungal hyphae to disperse. Based on a previous experimental device to enrich pairs of organisms engaging in this interaction in soils, we present here the design and validation of a modified version of this sampling system constructed using additive printing. The 3D printed devices were tested using a novel application in which a target fungus, the common coprophilous fungus Coprinopsis cinerea, was used as bait to recruit and identify bacterial partners using its mycelium for dispersal. Bacteria of the genera Pseudomonas, Sphingobacterium and Stenotrophomonas were highly enriched in association with C. cinerea. Developing and producing these new easy-to-use tools to investigate how bacteria overcome dispersal limitations in cooperation with fungi is important to unravel the mechanisms by which BFIs affect processes at an ecosystem scale in soils and other unsaturated environments.

2020 ◽  
Vol 53 (03) ◽  
pp. 324-334
Author(s):  
Gautam Biswas

Abstract Reconstruction of the complex anatomy and aesthetics of the midface is often a challenge. A careful understanding of this three-dimensional (3D) structure is necessary. Anticipating the extent of excision and its planning following oncological resections is critical.In the past over two decades, with the advances in microsurgical procedures, contributions toward the reconstruction of this area have generated interest. Planning using digital imaging, 3D printed models, osseointegrated implants, and low-profile plates, has favorably impacted the outcome. However, there are still controversies in the management: to use single composite tissues versus multiple tissues; implants versus autografts; vascularized versus nonvascularized bone; prosthesis versus reconstruction.This article explores the present available options in maxillary reconstruction and outlines the approach in the management garnered from past publications and experiences.


2008 ◽  
Vol 589 ◽  
pp. 421-425 ◽  
Author(s):  
Norbert Krisztián Kovács ◽  
József Gábor Kovács

Characteristics of 3D printed specimens are porous structure and low mechanical strength. Due to porous structure post treatment is possible, and in most cases infiltration with an epoxy resin, wax or cyanoacrylate material takes place. As a result of post treatment, the mechanical strength can be increased by 100%, although this is strongly influenced by the infiltration depth that depends on the porous structure and the resin viscosity. In the framework of the common research of the Department of Polymer Engineering, BME and Varinex Zrt. the applicability of a 3D printer is examined in the field of direct tool making. As the first step, the resin uptake ability of specimens prepared with a Z810 3D printer is examined.


Author(s):  
Irfan Ullah ◽  
Sridhar Kota

Abstract Use of mathematical optimization methods for synthesis of path-generating mechanisms has had only limited success due to the very complex nature of the commonly used Structural Error objective function. The complexity arises, in part, because the objective function represents not only the error in the shape of the coupler curve, but also the error in location, orientation and size of the curve. Furthermore, the common introduction of timing (or crank angle), done generally to facilitate selection of corresponding points on the curve for calculating structural error, has little practical value and unnecessarily limits possible solutions. This paper proposes a new objective function, based on Fourier Descriptors, which allows search for coupler curve of the desired shape without reference to location, orientation, or size. The proposed objective function compares overall shape properties of curves rather than making point-by-point comparison and therefore does not requires prescription of timing. Experimental evidence is provided to show that it is much easier to search the space of the proposed objective function compared to the structural error function.


2021 ◽  
Vol 22 (21) ◽  
pp. 11600
Author(s):  
Dong Jin Choi ◽  
Kyoung Choi ◽  
Sang Jun Park ◽  
Young-Jin Kim ◽  
Seok Chung ◽  
...  

Gelatin has excellent biological properties, but its poor physical properties are a major obstacle to its use as a biomaterial ink. These disadvantages not only worsen the printability of gelatin biomaterial ink, but also reduce the dimensional stability of its 3D scaffolds and limit its application in the tissue engineering field. Herein, biodegradable suture fibers were added into a gelatin biomaterial ink to improve the printability, mechanical strength, and dimensional stability of the 3D printed scaffolds. The suture fiber reinforced gelatin 3D scaffolds were fabricated using the thermo-responsive properties of gelatin under optimized 3D printing conditions (−10 °C cryogenic plate, 40–80 kPa pneumatic pressure, and 9 mm/s printing speed), and were crosslinked using EDC/NHS to maintain their 3D structures. Scanning electron microscopy images revealed that the morphologies of the 3D printed scaffolds maintained their 3D structure after crosslinking. The addition of 0.5% (w/v) of suture fibers increased the printing accuracy of the 3D printed scaffolds to 97%. The suture fibers also increased the mechanical strength of the 3D printed scaffolds by up to 6-fold, and the degradation rate could be controlled by the suture fiber content. In in vitro cell studies, DNA assay results showed that human dermal fibroblasts’ proliferation rate of a 3D printed scaffold containing 0.5% suture fiber was 10% higher than that of a 3D printed scaffold without suture fibers after 14 days of culture. Interestingly, the supplement of suture fibers into gelatin biomaterial ink was able to minimize the cell-mediated contraction of the cell cultured 3D scaffolds over the cell culture period. These results show that advanced biomaterial inks can be developed by supplementing biodegradable fibers to improve the poor physical properties of natural polymer-based biomaterial inks.


Author(s):  
Polina Yu. Krutskikh

Modern urban youth sports cultures are notable for their diverse and complex nature. The question arises as to what analytical approach should be used to study their multifaceted character. Using the St Petersburg skateboard scene as an example, the article shows the advantages in applying the concept of the post-sport cultures to understand how the common functions of urban infrastructure are redefined, what trends exist on the scene, how they shape the meanings attributed to them by the scene participants, and how those signs are read.  The study also employs the solidarity approach to describe the interactions between the scene participants through the ideas and ideological controversies shared by them. The focus of the paper is how to apply solidarity approach to study the nature of urban post-sport cultures based on St Petersburg skateboard scene case study. Given the lack of Russian publications on the topic, the study is also aimed at inscribing the Russian skateboarding experience into the Western academic context.


History of additive manufacturing started in the 1980s in Japan. Stereolithography was invented first in 1983. After that tens of other techniques were invented under the common name 3D printing. When stereolithography was invented rapid prototyping did not exists. Tree years later new technique was invented: selective laser sintering (SLS). First commercial SLS was in 1990. At the end of 20t century, first bio-printer was developed. Using bio materials, first kidney was 3D printed. Ten years later, first 3D Printer in the kit was launched to the market. Today we have large scale printers that printed large 3D objects such are cars. 3D printing will be used for printing everything everywhere. List of pros and cons questions rising every day.


Materials ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3057 ◽  
Author(s):  
Shuaishuai Cao ◽  
Jonghyeuk Han ◽  
Neha Sharma ◽  
Bilal Msallem ◽  
Wonwoo Jeong ◽  
...  

3D printed biomaterials have been extensively investigated and developed in the field of bone regeneration related to clinical issues. However, specific applications of 3D printed biomaterials in different dental areas have seldom been reported. In this study, we aimed to and successfully fabricated 3D poly (lactic-co-glycolic acid)/β-tricalcium phosphate (3D-PLGA/TCP) and 3D β-tricalcium phosphate (3D-TCP) scaffolds using two relatively distinct 3D printing (3DP) technologies. Conjunctively, we compared and investigated mechanical and biological responses on human dental pulp stem cells (hDPSCs). Physicochemical properties of the scaffolds, including pore structure, chemical elements, and compression modulus, were characterized. hDPSCs were cultured on scaffolds for subsequent investigations of biocompatibility and osteoconductivity. Our findings indicate that 3D printed PLGA/TCP and β-tricalcium phosphate (β-TCP) scaffolds possessed a highly interconnected and porous structure. 3D-TCP scaffolds exhibited better compressive strength than 3D-PLGA/TCP scaffolds, while the 3D-PLGA/TCP scaffolds revealed a flexible mechanical performance. The introduction of 3D structure and β-TCP components increased the adhesion and proliferation of hDPSCs and promoted osteogenic differentiation. In conclusion, 3D-PLGA/TCP and 3D-TCP scaffolds, with the incorporation of hDPSCs as a personalized restoration approach, has a prospective potential to repair minor and critical bone defects in oral and maxillofacial surgery, respectively.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Dieter Blaas

Abstract Rhinoviruses cause the common cold. They are icosahedral, built from sixty copies each of the capsid proteins VP1 through VP4 arranged in a pseudo T = 3 lattice. This shell encases a ss(+) RNA genome. Three-D classification of single and oligomeric asymmetric units computationally excised from a 2.9 Å cryo-EM density map of rhinovirus A89, showed that VP4 and the N-terminal extension of VP1 adopt different conformations within the otherwise identical 3D-structures. Analysis of up to sixty classes of single subunits and of six classes of subunit dimers, trimers, and pentamers revealed different orientations of the amino acid residues at the interface with the RNA suggesting that local asymmetry is dictated by disparities of the interacting nucleotide sequences. The different conformations escape detection by 3-D structure determination of entire virions with the conformational heterogeneity being only indicated by low density. My results do not exclude that the RNA follows a conserved assembly mechanism, contacting most or all asymmetric units in a specific way. However, as suggested by the gradual loss of asymmetry with increasing oligomerization and the 3D-structure of entire virions reconstructed by using Euler angles selected in the classification of single subunits, RNA path and/or folding likely differ from virion to virion.


Author(s):  
MAJOLAGBE O. N. ◽  
AINA D. A. ◽  
OMOMOWO I. O. ◽  
THOMAS A.

Objective: To determine the antimicrobial potentials of secondary metabolite of soil fungi and predict their 3D structure and molecular identity. Methods: Pure soil fungi were isolated from soil samples and cultured under submerged fermentation (Smf) for their metabolites using Potato Dextrose Agar and Broth. The secondary metabolites of the isolated fungi were obtained intracellularly after 21 d of incubation in a rotary shaker incubator. The antimicrobial potentials of the metabolites were investigated against four (4) clinical isolates, namely: Staphylococcus aureus, Klebsiella spp, Candida albicans and Escherichia coli. These soil fungi were further characterized to the molecular level and their evolutionary relationships established using bioinformatics tools. Protein structure of each of the fungi isolates was predicted using PHYRE-2. Results: Out of all the soil fungi isolated, the metabolite of Aspergillus aculeatus showed the highest antimicrobial activities against Staphylococcus aureus (23.00±2.34 mm), Escherichia coli (9.00±1.44 mm) and Klebsiella spp (24.00±3.45 mm). The 3D protein structure predicted showed that each of the organisms consists of different amino-acid compositions such as: serine, tyrosine, proline, arginine, glycine, phenylalanine leucine with other notable biological properties. Conclusion: The work revealed that secondary metabolites of the isolated fungi carry an important role in combating infectious agents thereby, providing roadmaps for the biosynthesis of many synthetic and semi-synthetic drugs and bio-products which are environmentally friendly.


Injury ◽  
2020 ◽  
Author(s):  
I. Aguado-Maestro ◽  
M. De Frutos-Serna ◽  
A. González-Nava ◽  
A.B. Merino-De Santos ◽  
M. García-Alonso

Sign in / Sign up

Export Citation Format

Share Document