scholarly journals A Global Search for novel Transcription Factors impacting the Neurospora crassa Circadian Clock

Author(s):  
Felipe Muñoz-Guzmán ◽  
Valeria Caballero ◽  
Luis F Larrondo

Abstract Eukaryotic circadian oscillators share a common circuit architecture, a negative feedback loop in which a positive element activates the transcription of a negative one that then represses the action of the former, inhibiting its own expression. While studies in mammals and insects have revealed additional transcriptional inputs modulating the expression of core clock components, this has been less characterized in the model Neurospora crassa, where the participation of other transcriptional components impacting circadian clock dynamics remains rather unexplored. Thus, we sought to identify additional transcriptional regulators modulating the N. crassa clock, following a reverse genetic screen based on luminescent circadian reporters and a collection of transcription factors knockouts, successfully covering close to 60% of them. Besides the canonical core clock components WC-1 and WC-2, none of the tested transcriptional regulators proved to be essential for rhythmicity. Nevertheless, we identified a set of 23 transcription factors that when absent lead to discrete, but significant, changes in circadian period. While the current level of analysis does not provide mechanistic information about how these new players modulate circadian parameters, the results of this screen reveal that an important number of light and clock-regulated transcription factors, involved in a plethora of processes, are capable of modulating the clockworks. This partial reverse genetic clock screen also exemplifies how the N. crassa knockout collection continues to serve as an expedite platform to address broad biological questions.

2001 ◽  
Vol 356 (1415) ◽  
pp. 1755-1759 ◽  
Author(s):  
Dorothee Staiger

An Arabidopsis transcript preferentially expressed at the end of the daily light period codes for the RNA–binding protein At GRP7. A reverse genetic approach in Arabidopsis thaliana has revealed its role in the generation of circadian rhythmicity: At GRP7 is part of a negative feedback loop through which it influences the oscillations of its own transcript. Biochemical and genetic experiments indicate a mechanism for this autoregulatory circuit: At grp7 gene transcription is rhythmically activated by the circadian clock during the day. The At GPR7 protein accumulates with a certain delay and represses further accumulation of its transcript, presumably at the post–transcriptional level. In this respect, the At GRP7 feedback loop differs from known circadian oscillators in the fruitfly Drosophila and mammals based on oscillating clock proteins that repress transcription of their own genes with a 24 h rhythm. It is proposed that the At GRP7 feedback loop may act within an output pathway from the Arabidopsis clock.


2019 ◽  
Author(s):  
Yunfeng Zhang ◽  
Haitang Qin ◽  
Yongjie Feng ◽  
Peng Gao ◽  
Yingbin Zhong ◽  
...  

AbstractAt the core of the mammalian circadian feedback loop, CLOCK (NPAS2)-BMAL1 is the positive element to activate transcription of downstream genes encoding the negative elements PERs and CRYs. Here we show that CNOT1 associates with both CLOCK and BMAL1, promotes their phosphorylation and increases their protein stability, and in turn inhibits the transcriptional activity of CLOCK-BMAL1. Expression of either CLOCK, BMAL1 or CNOT1 could interact with endogenous Protein Kinase A (PKA) as assessed by co-immunoprecipitation (Co-IP) and kinase assays. PKA could phosphorylate CLOCK and BMAL1 and this was promoted by CNOT1. Genetic deletion of PKA-Cα by CRISPR-Cas9 results in a longer period of the circadian rhythm; while overexpression of PKA-Cα induces a shorter period. Furthermore, we demonstrate that CNOT1 associates with CLOCK and BMAL1 in the mouse liver and promotes their phosphorylation. PER2, but not CRY2, is also a PKA target. Our results suggest that CNOT1 and PKA play a critical role in the mammalian circadian clock, revealing a conserved function in eukaryotic circadian regulations.


Genetics ◽  
1996 ◽  
Vol 144 (3) ◽  
pp. 991-1003 ◽  
Author(s):  
Rodolfo Aramayo ◽  
Yoav Peleg ◽  
Randolph Addison ◽  
Robert Metzenberg

Abstract This report describes the identification, cloning, and molecular analysis of Asm-1  + (Ascospore maturation 1), the Neurospora crassa homologue of the Aspergillus nidulans stuA (stunted A) gene. The Asm-1  + gene is constitutively transcribed and encodes an abundant, nucleus-localized 68.5-kD protein. The protein product of Asm-1  + (ASM-1), contains a potential DNA-binding motif present in related proteins from A. nidulans (StuA), Candida albicans (EFGTF-I), and Saccharomyces cerevisiae (Phd1 and Sok2). This motif is related to the DNA binding motif of the Swi4/Mbpl/Res family of transcription factors that control the cell cycle. Deletion of Asm-1  + destroys the ability to make protoperithecia (female organs), but does not affect male-specific functions. We propose that the APSES domain (ASM-1, Phdl, StuA, EFGTF-1, and Sok2) defines a group of proteins that constitute a family of related transcription factors involved in the control of fungal development.


Genes ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1284
Author(s):  
Norihito Nakamichi

The circadian clock is the biological timekeeping system that governs the approximately 24-h rhythms of genetic, metabolic, physiological and behavioral processes in most organisms. This oscillation allows organisms to anticipate and adapt to day–night changes in the environment. Molecular studies have indicated that a transcription–translation feedback loop (TTFL), consisting of transcriptional repressors and activators, is essential for clock function in Arabidopsis thaliana (Arabidopsis). Omics studies using next-generation sequencers have further revealed that transcription factors in the TTFL directly regulate key genes implicated in clock-output pathways. In this review, the target genes of the Arabidopsis clock-associated transcription factors are summarized. The Arabidopsis clock transcriptional network is partly conserved among angiosperms. In addition, the clock-dependent transcriptional network structure is discussed in the context of plant behaviors for adapting to day–night cycles.


Genetics ◽  
1976 ◽  
Vol 82 (1) ◽  
pp. 9-17 ◽  
Author(s):  
Jerry F Feldman ◽  
Marian N Hoyle

ABSTRACT A fourth mutant of Neurospora crassa, designated frq-4, has been isolated in which the period length of the circadian conidiation rhythm is shortened to 19.3 ± 0.3 hours. This mutant is tightly linked to the three previously isolated frq mutants, and all four map to the right arm of linkage group VII about 10 map units from the centromere. Complementation tests suggest, but do not prove, that all four mutations are allelic, since each of the four mutants is co-dominant with the frq  + allele—i.e., heterokaryons have period lengths intermediate between the mutant and wild-type—and since heterokaryons between pairs of mutants also have period lengths intermediate between those of the two mutants.


Genetics ◽  
2001 ◽  
Vol 159 (2) ◽  
pp. 537-543
Author(s):  
Louis W Morgan ◽  
Jerry F Feldman

Abstract We identified a series of epistatic and synergistic interactions among the circadian clock mutations of Neurospora crassa that indicate possible physical interactions among the various clock components encoded by these genes. The period-6 (prd-6) mutation, a short-period temperature-sensitive clock mutation, is epistatic to both the prd-2 and prd-3 mutations. The prd-2 and prd-3 long-period mutations show a synergistic interaction in that the period length of the double mutant strain is considerably longer than predicted. In addition, the prd-2 prd-3 double mutant strain also exhibits overcompensation to changes in ambient temperature, suggesting a role in the temperature compensation machinery of the clock. The prd-2, prd-3, and prd-6 mutations also show significant interactions with the frq7 long-period mutation. These results suggest that the gene products of prd-2, prd-3, and prd-6 play an important role in both the timing and temperature compensation mechanisms of the circadian clock and may interact with the FRQ protein.


2005 ◽  
Vol 33 (5) ◽  
pp. 949-952 ◽  
Author(s):  
N. Price-Lloyd ◽  
M. Elvin ◽  
C. Heintzen

The metronomic predictability of the environment has elicited strong selection pressures for the evolution of endogenous circadian clocks. Circadian clocks drive molecular and behavioural rhythms that approximate the 24 h periodicity of our environment. Found almost ubiquitously among phyla, circadian clocks allow preadaptation to rhythms concomitant with the natural cycles of the Earth. Cycles in light intensity and temperature for example act as important cues that couple circadian clocks to the environment via a process called entrainment. This review summarizes our current understanding of the general and molecular principles of entrainment in the model organism Neurospora crassa, a simple eukaryote that has one of the best-studied circadian systems and light-signalling pathways.


Sign in / Sign up

Export Citation Format

Share Document