scholarly journals Generation of Drosophila attP containing cell lines using CRISPR-Cas9

Author(s):  
Daniel Mariyappa ◽  
Arthur Luhur ◽  
Danielle Overton ◽  
Andrew C Zelhof

Abstract The generation of Drosophila stable cell lines have become invaluable for complementing in vivo experiments and as tools for genetic screens. Recent advances utilizing attP/PhiC31 integrase system has permitted the creation of Drosophila cells in which recombination mediated cassette exchange (RMCE) can be utilized to generate stably integrated transgenic cell lines that contain a single copy of the transgene at the desired locus. Current techniques, besides being laborious and introducing extraneous elements, are limited to a handful of cell lines of embryonic origin. Nonetheless, with well over 100 Drosophila cell lines available, including an ever-increasing number CRISPR/Cas9 modified cell lines, a more universal methodology is needed to generate a stably integrated transgenic line from any one of the available Drosophila melanogaster cell lines. Here we describe a toolkit and procedure that combines CRISPR/Cas9 and the PhiC31 integrase system. We have generated and isolated single cell clones containing an Actin5C::dsRed cassette flanked by attP sites into the genome of Kc167 and S2R+ cell lines that mimic the in vivo attP sites located at 25C6 and 99F8 of the Drosophila genome. Furthermore, we tested the functionality of the attP docking sites utilizing two independent GFP expressing constructs flanked by attB sites that permit RMCE and therefore the insertion of any DNA of interest. Lastly, to demonstrate the universality of our methodology and existing constructs, we have successfully integrated the Actin5C::dsRed cassette flanked by attP sites into two different CNS cell lines, ML-DmBG2-c2 and ML-DmBG3-c2. Overall, the reagents and methodology reported here permit the efficient generation of stable transgenic cassettes with minimal change in the cellular genomes in existing D. melanogaster cell lines.

2021 ◽  
Author(s):  
Andrew C. Zelhof ◽  
Daniel Mariyappa ◽  
Arthur Luhur ◽  
Danielle Overton

The generation of Drosophila stable cell lines have become invaluable for complementing in vivo experiments and as tools for genetic screens. Recent advances utilizing attP/PhiC31 integrase system has permitted the creation of Drosophila cells in which recombination mediated cassette exchange (RMCE) can be utilized to generate stably integrated transgenic cell lines that contain a single copy of the transgene at the desired locus. Current techniques, besides being laborious and introducing extraneous elements, are limited to a handful of cell lines of embryonic origin. Nonetheless, with well over 100 Drosophila cell lines available, including an ever-increasing number CRISPR/Cas9 modified cell lines, a more universal methodology is needed to generate a stably integrated transgenic line from any one of the available Drosophila melanogaster cell lines. Here we describe a toolkit and procedure that combines CRISPR/Cas9 and the PhiC31 integrase system. We have generated and isolated single cell clones containing an Actin5C::dsRed cassette flanked by attP sites into the genome of Kc167 and S2R+ cell lines that mimic the in vivo attP sites located at 25C6 and 99F8 of the Drosophila genome. Furthermore, we tested the functionality of the attP docking sites utilizing two independent GFP expressing constructs flanked by attB sites that permit RMCE and therefore the insertion of any DNA of interest. Lastly, to demonstrate the universality of our methodology and existing constructs, we have successfully integrated the Actin5C::dsRed cassette flanked by attP sites into two different CNS cell lines, ML-DmBG2-c2 and ML-DmBG3-c2. Overall, the reagents and methodology reported here permit the efficient generation of stable transgenic cassettes with minimal change in the cellular genomes in existing D. melanogaster cell lines.


2020 ◽  
Vol 13 ◽  
pp. 175628481989543
Author(s):  
Amanda Braga Bona ◽  
Danielle Queiroz Calcagno ◽  
Helem Ferreira Ribeiro ◽  
José Augusto Pereira Carneiro Muniz ◽  
Giovanny Rebouças Pinto ◽  
...  

Background: Gastric cancer is one of the most incident types of cancer worldwide and presents high mortality rates and poor prognosis. MYC oncogene overexpression is a key event in gastric carcinogenesis and it is known that its protein positively regulates CDC25B expression which, in turn, plays an essential role in the cell division cycle progression. Menadione is a synthetic form of vitamin K that acts as a specific inhibitor of the CDC25 family of phosphatases. Methods: To better understand the menadione mechanism of action in gastric cancer, we evaluated its molecular and cellular effects in cell lines and in Sapajus apella, nonhuman primates from the new world which had gastric carcinogenesis induced by N-Methyl-N-nitrosourea. We tested CDC25B expression by western blot and RT-qPCR. In-vitro assays include proliferation, migration, invasion and flow cytometry to analyze cell cycle arrest. In in-vivo experiments, in addition to the expression analyses, we followed the preneoplastic lesions and the tumor progression by ultrasonography, endoscopy, biopsies, histopathology and immunohistochemistry. Results: Our tests demonstrated menadione reducing CDC25B expression in vivo and in vitro. It was able to reduce migration, invasion and proliferation rates, and induce cell cycle arrest in gastric cancer cell lines. Moreover, our in-vivo experiments demonstrated menadione inhibiting tumor development and progression. Conclusions: We suggest this compound may be an important ally of chemotherapeutics in the treatment of gastric cancer. In addition, CDC25B has proven to be an effective target for investigation and development of new therapeutic strategies for this malignancy.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3017-3017
Author(s):  
Chiara Tarantelli ◽  
Eugenio Gaudio ◽  
Petra Hillmann ◽  
Filippo Spriano ◽  
Ivo Kwee ◽  
...  

Abstract Background. The PI3K/AKT/mTOR pathway is an important therapeutic target in lymphomas. PQR309 is a dual PI3K/mTOR inhibitor that has shown in vitroanti-lymphoma activity (Tarantelli et al, ASH2015) and is in phase 2 trial (NCT02249429, , NCT02723877, NCT02669511). PQR620 is a novel mTORC1/2 inhibitor that has shown preclinical activity in solid tumor models (Beaufils et al, AACR 2016). Here, we present the in vitro and in vivo anti-lymphoma activity of PQR620 as single agent and also the in vivo results of PQR620 or PQR309 containing combinations with the BCL2 inhibitor venetoclax. Materials and Methods. The drug concentration causing 50% inhibition of cell proliferation (IC50) was obtained in lymphoma cell lines [diffuse large B cell lymphoma (DLBCL), no.=26; mantle cell lymphoma (MCL), no.=8; anaplastic large T-cell lymphoma, no.=5; others, no=5] exposed to increasing doses of PQR620 for 72h using a Tecan D300e Digital Dispenser on 384well plates. For in vivo experiments, NOD-Scid (NOD.CB17-Prkdcscid/J) mice were subcutaneously inoculated with 10 x106 (RIVA) or with 5 x106(SU-DHL-6) cells. Results. PQR620 had a median IC50 of 250 nM (95%CI, 200-269 nM) when tested on 44 lymphoma cell lines. Activity was higher in B cell (no.=36) than in T cell tumors (no.=8) (median IC50s: 250 nM vs 450 nM; P=0.002). At 72h, anti-tumor activityof PQR620 was mostly cytostatic and apoptosis induction was seen only in 6/44 cell lines (13%), Sensitivity to PQR620 or apoptosis induction did not differ between DLBCL and MCL, and they were not affected by the DLBCL cell of origin, by TP53 status or by the presence of MYC or BCL2 translocations. The activity of PQR620 as single agent underwent in vivo evaluation in two DLBCL models, the germinal center B cell type DLBCL (GCB-DLBCL) SU-DHL-6 and the acivated B cell-like DLBCL (ABC-DLBCL) RIVA. Treatments with PQR620 (100mg/kg dose per day, Qdx7/w) started with 100-150 mm3 tumors and were carried for 14 (SU-DHL-6) or 21 days (RIVA). In both models, PQR620 determined a 2-fold decrease of the tumor volumes in comparison with control, with significant differences in both SU-DHL-6 (D7, D9, D11, D14; P < 0.005) and RIVA (D14, D16, D19, D21; P < 0.005). Based on the previously reported synergy between the dual PI3K/mTOR inhibitor PQR309 and venetoclax (Tarantelli et al, ASH 2015), we evaluated the combination of the PQR620 or PQR309 with the BCL2 inhibitor venetoclax (100 mg/kg, Qdx7/w) in the SU-DHL-6 model. Both the venetoclax combination with the dual PI3K/mTOR inhibitor and the venetoclax combination with mTORC1/2 inhibitor were superior to the compounds given as single agents, leading to the eradication of the xenografts. The combination of PQR620 with venetoclax showed highly significant differences either versus control or single agents during all days of the experiment (D4, D7, D9, D11, D14; P < 0.001). Similarly, the combination of PQR309 with venetoclax showed highly significant differences versus venetoclax (D7, D9, D11, D14; P < 0.001) and PQR309 (D7, D9, D11; P < 0.005) alone. Conclusions. The novel mTORC1/2 inhibitor PQR620 had in vitro and in vivo anti-lymphoma activity as single agent. In vivo experiments showed that both PQR620 and the dual PI3K/mTOR inhibitor PQR309 can strongly benefit from the combination with the BCL2 inhibitor venetoclax. Disclosures Hillmann: PIQUR Therapeutics AG: Employment. Fabbro:PIQUR Therapeutics AG: Employment. Cmiljanovic:PIQUR Therapeutics AG: Employment, Membership on an entity's Board of Directors or advisory committees.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi39-vi40
Author(s):  
Lubayna Elahi ◽  
Matthew Garrett ◽  
Lea Guo ◽  
Michael Condro ◽  
Riki Kawaguchi ◽  
...  

Abstract Histone deacetylase inhibitors (HDACi’s) have emerged as a promising class of drugs for treatment of malignancies such as glioblastoma (GBM). Several studies have demonstrated the anti-tumor property of HDACi’s against GBM in both in vitro and in vivo experiments. Nonetheless, in clinical trials, HDACi only marginally increased overall survival of patients with GBM. The mixed results of trials with HDACi’s in glioma have prompted us to hypothesize that improved selection of patients by tumor characteristics could enhance the efficacy of therapy. We specifically tested the effects of valproic acid (VPA), a HDACi and an antiepileptic drug against IDH mutant gliomas. We have previously demonstrated that our IDH mutant glioma cell lines have gene expression and methylation patterns highly similar to IDH mutant tumors in situ. Mutant IDH1 alters the epigenetic landscape of gliomas leading to the hypermethylation phenotype and transcriptional repression of genes. This repression of genes may contribute to tumorigenesis and progression of IDH mutant gliomas. We found that VPA inhibits the growth of patient-derived IDH1 mutant glioma lines. In addition, RNA sequencing analysis of vehicle and VPA-treated IDH1 mutant glioma cells showed de-repression of several genes previously shown to be downregulated in IDH1 mutant glioma cell lines. We also treated cells with another HDACi LBH589 and found that both VPA and LBH589 upregulates similar gene sets suggesting that HDAC inhibition promotes de-repression of previously repressed genes. Ongoing studies are aimed at determining the molecular mechanism by which VPA regulates the growth of IDH1 mutant tumors.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 4756-4756 ◽  
Author(s):  
Gwyn Bebb ◽  
Huong Muzik ◽  
Sophia Nguyen ◽  
Don Morris ◽  
Douglas A. Stewart

Abstract Introduction Mantle cell lymphoma (MCL), an incurable B cell lymphoma, consistently over expresses bcl-2 despite not carrying the t(14;18). The attenuation of apoptosis by bcl-2 is thought to contribute to the malignant process and increase resistance to some cytotoxic agents. We recently demonstrated that GX15-070, a small molecular inhibitor of the BH3 binding groove of bcl-2, has activity against MCL cell lines in vitro. We set out to assess the effect of GX15-070 alone and in combination with Vincristine on the viability of MCL cells in vitro and in vivo. Methods 3 previously characterized bcl-2 over expressing MCL cell lines (JVM-2, Hbl-2, granta) were used. Cells were grown in standard media and exposed to a range of concentrations of GX15-070 with and without Vincristine. Dose-response was assessed by measuring viability at 48 hours using the WST-1 assay. In vivo experiments were conducted on immune deficient mice in which 5×106 cells were injected in the flank then treated IV with GX15-070 (q 2days × 5 doses), Vincristine (q4 days × 3 doses) or both starting 5 days later. Tumours were measured three times weekly. Results All three MCL cell lines over-expressed bcl-2 by western blot. Each MCL cell line showed sensitivity to GX15-070 at a range of concentrations. The addition of GX15-070 to low dose Vincristine (10−6) caused significant growth inhibition of each MCL cell line (see table 1). Discussion Our results demonstrate that using GX15-070 to target bcl-2 is an effective anti neoplastic approach against MCL cell lines in vitro. In addition, our results suggest that combining Vincristine and GX15-070 is a promising strategy in treating MCL. In vivo experiments to confirm this additive activity are still ongoing and will be presented in full. Initial impressions suggest that there is a rationale for the addition of GX15-070 to current cytotoxic regimens used to treat MCL in the setting of clinical trials. Table 1: Effect of Vincristine and GX15-070 on in vitro growth of 3 MCL cell lines Growth as % age of Control Cell Line JVM-2 HBL-2 Granta Vincristine alone (10-6 mg/ml) 92% 48% 89% GX15-070 alone (0.08 uM) 75% 76% 60% Vincristine 10-6 mg/ml and GX15-070 0.08 uM 52% 24% 52%


2001 ◽  
Vol 154 (4) ◽  
pp. 683-690 ◽  
Author(s):  
Beth Sullivan ◽  
Gary Karpen

Centromeric chromatin is uniquely marked by the centromere-specific histone CENP-A. For assembly of CENP-A into nucleosomes to occur without competition from H3 deposition, it was proposed that centromeres are among the first or last sequences to be replicated. In this study, centromere replication in Drosophila was studied in cell lines and in larval tissues that contain minichromosomes that have structurally defined centromeres. Two different nucleotide incorporation methods were used to evaluate replication timing of chromatin containing CID, a Drosophila homologue of CENP-A. Centromeres in Drosophila cell lines were replicated throughout S phase but primarily in mid S phase. However, endogenous centromeres and X-derived minichromosome centromeres in vivo were replicated asynchronously in mid to late S phase. Minichromosomes with structurally intact centromeres were replicated in late S phase, and those in which centric and surrounding heterochromatin were partially or fully deleted were replicated earlier in mid S phase. We provide the first in vivo evidence that centromeric chromatin is replicated at different times in S phase. These studies indicate that incorporation of CID/CENP-A into newly duplicated centromeres is independent of replication timing and argue against determination of centromere identity by temporal sequestration of centromeric chromatin replication relative to bulk genomic chromatin.


2019 ◽  
Vol 39 (1) ◽  
Author(s):  
Chunfeng Liu ◽  
Lei Ren ◽  
Jun Deng ◽  
Songping Wang

Abstract Lung adenocarcinoma (LAD) is one of the most common malignancies that threats human health worldwide. Long non-coding RNAs (lncRNAs) have been reported to play significant roles in tumorigenesis and might be novel biomarkers and targets for diagnosis and treatment of cancers. TP73-AS1 is a newly discovered lncRNA involved in the tumorigenesis and development of several cancers. However, its role in LAD has not been investigated yet. In the present study, we first found that TP73-AS1 expression was markedly increased in LAD tissues and cell lines and its overexpression was strongly associated with poor clinical outcomes. Then the loss/gain-of-function assays elucidated that TP73-AS1 contributed to cell proliferation, migration, and invasion in vitro, and the in vivo experiments illustrated that its knockdown inhibited tumor growth and metastasis. What was more, we discovered that phosphoinositide 3-kinase and AKT (PI3K/AKT) pathway was activated both in LAD tissues and cell lines but inactivated under TP73-AS1 silence. Moreover, the activation of this pathway could rescue the inhibitory effects of TP73-AS1 suppression on LAD cellular processes partially. These data suggested that TP73-AS1 served as an oncogene in LAD partially through activating PI3K/AKT pathway and it could be a potential target for diagnosis and treatment of LAD.


Genome ◽  
2003 ◽  
Vol 46 (5) ◽  
pp. 879-892 ◽  
Author(s):  
Scott J Neal ◽  
Meredith L Gibson ◽  
Anthony K.-C So ◽  
J Timothy Westwood

We have constructed a DNA microarray that represents approximately 6900 of the estimated 13 598 genes in the Drosophila melanogaster genome. The microarray contains 5756 target cDNAs from the Berkeley Drosophila Genome Project, 1078 cDNAs from the National Institutes of Health Drosophila testis cDNA library, and 546 gene fragments that were amplified from genomic DNA. The methods for DNA amplification and microarray manufacture are presented. Academic researchers can obtain the microarray from the Canadian Drosophila Microarray Centre. To evaluate the utility of these arrays, we compared the gene transcription profiles of two commonly used Drosophila cell lines. Analysis revealed that 5412 spot pairs gave signals consistently above the average background in Kc167 cells, whereas 5636 spot pairs met this criterion in SL2 cells. When the expression profiles of the cell lines were compared, 1437 genes displayed at least a 1.5-fold difference, and 170 genes had a threefold or greater difference between the two cell lines. In each case, with respect to Kc167 when compared with SL2 cells, the number of genes that were upregulated was nearly equal to the number of downregulated genes. This result demonstrates that despite the similar embryonic derivation of both cell lines, their transcriptional profiles are very different.Key words: DNA microarray, Drosophila, transcriptional regulation, SL2, Kc167.


2021 ◽  
Author(s):  
Benjamin E. Low ◽  
Vishnu Hosur ◽  
Simon Lesbirel ◽  
Michael V. Wiles

Abstract The development of mouse models of human disease and synthetic biology research by targeted transgenesis of large DNA constructs represent a significant genetic engineering hurdle. We developed an efficient, precise, single-copy integration of large transgenes directly into zygotes using multiple mouse genetic backgrounds. We used in vivo Bxb1 mediated recombinase-mediated cassette exchange (RMCE) with a transgene “landing pad” composed of dual heterologous Bxb1 attachment (att) sites in cis, within the Gt(ROSA)26Sor safe harbor locus. RMCE of donor was achieved by microinjection of vector DNA carrying cognate attachment sites flanking the donor transgene with Bxb1-integrase mRNA. This approach achieves perfect vector-free integration of donor constructs at efficiencies >40% with up to ~43kb transgenes. Coupled with a nanopore-based Cas9-targeted sequencing (nCATS), complete verification of precise insertion sequence was achieved. As a proof-of-concept we describe the development of C57BL/6J and NSG Krt18-ACE2 models for SARS-CoV2 research with verified heterozygous N1 animals within ~4 months. Additionally, we created a series of mice with diverse backgrounds carrying a single att site including FVB/NJ, PWK/PhJ, NOD/ShiLtJ, CAST/EiJ and DBA/2J allowing for rapid transgene insertion. Combined, this system enables predictable, rapid development combined with simplified characterization of precisely targeted transgenic animals across multiple genetic backgrounds.


2021 ◽  
Author(s):  
Wuer Zhou ◽  
Yue Yang ◽  
Wei Wang ◽  
Chenglin Yang ◽  
Zhi Cao ◽  
...  

Abstract Background Octamer-binding transcription factor 4 pseudogene 5 (OCT4-pg5) contributes to tumor progression in many cancer types, but contributions to bladder cancer (BC) have not been investigated. Methods Real-time quantity PCR (RT-qPCR) was performed to measure OCT4-pg5 and OCT4B expressions in different bladder cell lines and different grades of cancer. The effects of OCT4-pg5, OCT4B and miR-145 on proliferation and metastasis were determined by in vitro and in vivo experiments. Luciferase reporter assay was carried out to reveal the interaction among OCT4-pg5, OCT4B and miR-145. Flow cytometry was performed to explore the effects of OCT4-pg5 and OCT4B expression on the cell cycle stage distribution of T24 cells. Results OCT4-pg5 expression was significantly increased in BC cell lines, which was correlated with OCT4B expression and advanced tumor grade. Overexpression of OCT4-pg5 and OCT4B promoted the proliferation and invasion of BC cells, while miR-145 suppressed these activities. Mechanically, OCT4-pg5 3’ untranslated region (3’UTR) competed for miR-145, thereby increasing OCT4B expression. In addition, OCT4-pg5 promoted EMT by activating the Wnt/β-catenin pathway and upregulating the expression levels of matrix metalloproteinases (MMPs) 2 and 9 as well as transcription factors zinc finger E-box binding homeobox (ZEB) 1 and 2. Furthermore, elevated expression of OCT4-pg5 and OCT4B reduced the sensitivity of BC cells to cisplatin by reducing apoptosis and increasing the proportion of cells in G1. Conclusions These findings indicate that OCT4-pg5/miR-145/OCT4B axis promotes the progression of BC by inducing EMT via Wnt/β-catenin pathway and enhances the cisplatin resistance. It could be prospect for the therapeutic approaches for BC.


Sign in / Sign up

Export Citation Format

Share Document