scholarly journals ACTIVITY OF THE SEX-DETERMINING GENE tra-2 IS MODULATED TO ALLOW SPERMATOGENESIS IN THE C. ELEGANS HERMAPHRODITE

Genetics ◽  
1986 ◽  
Vol 114 (1) ◽  
pp. 53-76
Author(s):  
Tabitha Doniach

ABSTRACT In the nematode C. elegans, there are two sexes, the self-fertilizing hermaphrodite (XX) and the male (XO). The hermaphrodite is essentially a female that makes sperm for a brief period before oogenesis. Sex determination in C. elegans is controlled by a pathway of autosomal regulatory genes, the state of which is determined by the X:A ratio. One of these genes, tra-2, is required for hermaphrodite development, but not for male development, because null mutations in tra-2 masculinize XX animals but have no effect on XO males. Dominant, gain-of-function tra-2 mutations have now been isolated that completely feminize the germline of XX animals so that they make only oocytes and no sperm and, thus, are female. Most of the tra-2(dom) mutations do not correspondingly feminize XO animals, so they do not appear to interfere with control by her-1, a gene thought to negatively regulate tra-2 in XO animals. Thus, these mutations appear to cause gain of tra-2 function in the XX animal only. Dosage studies indicate that 5 of 7 tra-2(dom) alleles are hypomorphic, so they do not simply elevate XX tra-2 activity overall. These properties suggest that in the wild type, tra-2 activity is under two types of control: (1) in males, it is inactivated by her-1 to allow male development to occur, and (2) in hermaphrodites, tra-2 is active but transiently inactivated by another, unknown, regulator to allow hermaphrodite spermatogenesis; this mode of regulation is hindered by the tra-2(dom) mutations, thereby resulting in XX females.

Genetics ◽  
1987 ◽  
Vol 115 (1) ◽  
pp. 107-119 ◽  
Author(s):  
M Kathryn Barton ◽  
Timothy B Schedl ◽  
Judith Kimble

ABSTRACT We have isolated nine gain-of-function (gf) alleles of the sex-determination gene fem-3 as suppressors of feminizing mutations in fem-1 and fem-2. The wild-type fem-3 gene is needed for spermatogenesis in XX self-fertilizing hermaphrodites and for male development in both soma and germ line of XO animals. Loss-of-function alleles of fem-3 transform XX and XO animals into females (spermless hermaphrodites). In contrast, fem-3(gf) alleles masculinize only one tissue, the hermaphrodite germ line. Thus, XX fem-3(gf) mutant animals have a normal hermaphrodite soma, but the germ line produces a vast excess of sperm and no oocytes. All nine fem-3(gf) alleles are temperature sensitive. The temperature-sensitive period is from late L4 to early adult, a period just preceding the first signs of oogenesis. The finding of gain-of-function alleles which confer a phenotype opposite to that of loss-of-function alleles supports the idea that fem-3 plays a critical role in germ-line sex determination. Furthermore, the germ-line specificity of the fem-3(gf) mutant phenotype and the late temperature-sensitive period suggest that, in the wild-type XX hermaphrodite, fem-3 is negatively regulated so that the hermaphrodite stops making sperm and starts making oocytes. Temperature shift experiments also show that, in the germ line, sexual commitment appears to be a continuing process. Spermatogenesis can resume even after oogenesis has begun, and oogenesis can be initiated much later than normal


2006 ◽  
Vol 188 (21) ◽  
pp. 7387-7395 ◽  
Author(s):  
Sigal Lechno-Yossef ◽  
Qing Fan ◽  
Shigeki Ehira ◽  
Naoki Sato ◽  
C. Peter Wolk

ABSTRACT Regulatory genes hepK, hepN, henR, and hepS are required for heterocyst maturation in Anabaena sp. strain PCC 7120. They presumptively encode two histidine kinases, a response regulator, and a serine/threonine kinase, respectively. To identify relationships between those genes, we compared global patterns of gene expression, at 14 h after nitrogen step-down, in corresponding mutants and in the wild-type strain. Heterocyst envelopes of mutants affected in any of those genes lack a homogeneous, polysaccharide layer. Those of a henR mutant also lack a glycolipid layer. patA, which encodes a positive effector of heterocyst differentiation, was up-regulated in all mutants except the hepK mutant, suggesting that patA expression may be inhibited by products related to heterocyst development. hepS and hepK were up-regulated if mutated and so appear to be negatively autoregulated. HepS and HenR regulated a common set of genes and so appear to belong to one regulatory system. Some nontranscriptional mechanism may account for the observation that henR mutants lack, and hepS mutants possess, a glycolipid layer, even though both mutations down-regulated genes involved in formation of the glycolipid layer. HepK and HepN also affected transcription of a common set of genes and therefore appear to share a regulatory pathway. However, the transcript abundance of other genes differed very significantly from expression in the wild-type strain in either the hepK or hepN mutant while differing very little from wild-type expression in the other of those two mutants. Therefore, hepK and hepN appear to participate also in separate pathways.


1995 ◽  
Vol 73 (7) ◽  
pp. 1001-1009 ◽  
Author(s):  
Zamir K. Punja

Three strains of Chalara elegans from diverse geographical areas that contained multiple (4 or 5) double-stranded RNA fragments were compared with spontaneously derived cultures from these strains that were either partially cured or completely free of dsRNA. In the wild-type strains, presence of the dsRNAs was found to significantly enhance phialospore production and pigmentation of colonies, whereas radial growth and mycelial dry weight accumulation were reduced. The rate and overall percentage of phialospore germination on 1% Noble water agar were also significantly reduced by the presence of the dsRNAs. In two partially cured strains (only one 2.8-kb fragment remaining), pathogenicity to various plant tissues was significantly enhanced when compared with the wild-type strains containing multiple dsRNA. However, survival in field soil was enhanced in one strain and reduced in the other. In the completely cured strain, the loss of multiple dsRNA fragments was associated with enhanced growth, reduced phialospore production, and a complete loss of pathogenicity and capability for survival in soil. These results indicate that the effects of dsRNAs in C. elegans vary with the strain. In general, the presence of multiple dsRNAs in this fungus enhanced sporulation, altered colony morphology, and reduced growth and pathogenicity. However, since the complete loss of dsRNA was found to eliminate pathogenicity and reduce survival, it suggests that some dsRNA fragments in C. elegans may confer an advantage to this soil-borne facultative plant pathogen. Key words: black root rot, soil-borne plant pathogen, Thielaviopsis basicola.


Botany ◽  
2012 ◽  
Vol 90 (3) ◽  
pp. 175-179 ◽  
Author(s):  
Mike Ganger ◽  
Tiffany Sturey

In many plants females invest more in reproduction than males. In organisms that exhibit environmental sex determination, individuals in low-quality environments or who are slow growing are expected to develop into males. The gametophytes of Ceratopteris richardii Brongn., a homosporous fern, may develop as males or hermaphrodites. Hermaphrodites secrete a pheromone called antheridiogen that induces undifferentiated spores to develop as males. Given that induction is not 100% in the presence of antheridiogen, it is hypothesized that resources may alter C. richardii gender decisions. An experiment was undertaken to determine (i) whether spore size predicts gender, (ii) whether spore size predicts gametophyte size, (iii) whether antheridiogen negatively affects the growth of C. richardii, and (iv) whether wild-type C. richardii and him1 mutants (genetic mutants disposed to male development regardless of antheridiogen presence) behave similarly in their response to antheridiogen. Spore size was not predictive of gender but was positively related to both male and hermaphrodite gametophyte size. Antheridiogen was found to slow the growth of male and hermaphrodite gametophytes of the wild type and male gametophytes of the him1 mutant. These results are supportive of the idea that gender may be determined indirectly through antheridiogen’s effect on gametophyte growth.


2019 ◽  
Author(s):  
Lars Benner ◽  
Katherine Prothro ◽  
Katherine McJunkin

AbstractThe germline sex determination pathway in C. elegans determines whether germ cells develop as oocytes or sperm, with no previously known effect on viability. The mir-35 family of microRNAs are expressed in the C. elegans germline and embryo and are essential for both viability and normal hermaphroditic sex determination, preventing aberrant male gene expression in XX hermaphrodite embryos. Here we show that combining feminizing mutations with partial loss of function of the mir-35 family results in enhanced penetrance embryonic lethality that preferentially kills XO animals. This lethal phenotype is due to altered signaling through the germline sex determination pathway, and maternal germline feminization is sufficient to induce enhanced lethality. These findings reveal a surprising pleiotropy of sperm-fate promoting pathways on organismal viability. Overall, our results demonstrate an unexpectedly strong link between sex determination and embryonic viability, and suggest that in wild type animals, mir-35 family members buffer against misregulation of pathways outside the sex determination program, allowing for clean sex reversal rather than deleterious effects of perturbing sex determination genes.


Genetics ◽  
1986 ◽  
Vol 114 (1) ◽  
pp. 15-52
Author(s):  
Jonathan Hodgkin

ABSTRACT Mutations of the gene tra-3 result in partial masculinization of XX animals of C. elegans, which are normally hermaphrodites (males are XO). A total of 43 tra-3 revertants (one intragenic, 42 extragenic) have been isolated and analyzed, in the hope of identifying new sex-determination loci. Most (38) of the extragenic suppressors cause partial or complete feminization of XX and XO animals; the remaining four are weak suppressors. The feminizing suppressors are mostly alleles of known sex-determining genes: tra-1 (11 dominant alleles), tra-2 (one dominant allele), fem-1 (four alleles) and fem-2 (four alleles), but 18 are alleles of a new gene, fem-3. Additional alleles have been isolated for the fem-2 and fem-3 genes, as well as fem-3 deficiencies. Mutations in fem-3 resemble alleles of fem-1 (previously characterized): putative null alleles result in complete feminization of XX and XO animals, transforming them into fertile females. Severe alleles of fem-2 also cause complete feminization of XX animals at all temperatures, but feminization of fem-2 XO animals is temperature-sensitive: complete at 25°, incomplete at 20°. As with fem-1, severe mutations of fem-2 and fem-3 are wholly epistatic to masculinizing alleles of tra-2 and tra-3, and epistatic to tra-1 masculinizing alleles in the germline, but not in the soma. All three fem genes are essential for male development and appear to have a dual role in promoting spermatogenesis and repressing tra-1 activity. All three fem genes exhibit strong maternal effects; the maternal contribution of fem gene products may be inactivated in XX animals by a posttranscriptional mechanism. Maternal contributions of wild-type fem-3 product are necessary for normal XO male development and XX hermaphrodite (as opposed to female) development.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Koumei Yazaki ◽  
Chinatsu Yoshikoshi ◽  
Satoru Oshiro ◽  
Sumino Yanase

Astaxanthin (AX), which is produced by some marine animals, is a type of carotenoid that has antioxidative properties. In this study, we initially examined the effects of AX on the aging of a model organismC. elegansthat has the conserved intracellular pathways related to mammalian longevity. The continuous treatments with AX (0.1 to 1 mM) from both the prereproductive and young adult stages extended the mean lifespans by about 16–30% in the wild-type and long-lived mutantage-1ofC. elegans. In contrast, the AX-dependent lifespan extension was not observed even in adaf-16null mutant. Especially, the expression of genes encoding superoxide dismutases and catalases increased in two weeks after hatching, and the DAF-16 protein was translocated to the nucleus in the AX-exposed wild type. These results suggest that AX protects the cell organelle mitochondria and nucleus of the nematode, resulting in a lifespan extension via an Ins/IGF-1 signaling pathway during normal aging, at least in part.


2004 ◽  
Vol 382 (3) ◽  
pp. 995-1001 ◽  
Author(s):  
Shaoxian ZHU ◽  
Andrew HANNEMAN ◽  
Vernon N. REINHOLD ◽  
Andrew M. SPENCE ◽  
Harry SCHACHTER

We have previously reported, from the nematode worm Caenor-habditis elegans, three genes (gly-12, gly-13 and gly-14) encoding enzymically active UDP-N-acetyl-D-glucosamine:α-3-D-mannoside β1,2-N-acetylglucosaminyltransferase I (GnT I), an enzyme essential for hybrid, paucimannose and complex N-glycan synthesis. We now describe a worm with null mutations in all three GnT I genes, gly-14 (III);gly-12 gly-13 (X) (III and X refer to the chromosome number). The triple-knock-out (TKO) worms have a normal phenotype, although they do not express GnT I activity and do not synthesize 31 paucimannose, complex and fucosylated oligomannose N-glycans present in the wild-type worm. The TKO worm has increased amounts of non-fucosylated oligomannose N-glycan structures, a finding consistent with the site of GnT I action. Five fucosylated oligomannose N-glycan structures were observed in TKO, but not wild-type, worms, indicating the presence of unusual GnT I-independent fucosyltransferases. It is concluded that wild-type C. elegans makes a large number of GnT I-dependent N-glycans that are not essential for normal worm development under laboratory conditions. The TKO worm may be more susceptible to mutations in other genes, thereby providing an approach for the identification of genes that interact with GnT I.


2020 ◽  
Author(s):  
Fleurdeliz Maglangit ◽  
Yuting Zhang ◽  
Kwaku Kyeremeh ◽  
Hai Deng

AbstractContinued mining of natural products from the strain Streptomyces sp. MA37 in our laboratory led to the discovery of a minor specialised metabolite (SM) called accramycin A. Owing to its low yield (0.2mg/L) in the wild type strain, we investigated the roles of regulatory genes in the corresponding biosynthetic gene cluster (acc BGC) through gene inactivation with the aim of improving the titre of this compound. One of the resulting mutants (ΔaccJ) dramatically upregulated the production of accramycin A 1 by 330-fold (66mg/L). Furthermore, ten new metabolites, accramycins B-K 2-11, were discovered, together with two known compounds, naphthacemycin B112 and fasamycin C 13 from the mutant extract. This suggested that accJ, annotated as Multiple Antibiotic Resistance Regulator (MarR), is a negative regulator gene in the accramycin biosynthesis. Compounds 1-13 inhibited the Gram-positive pathogens (S. aureus, E. faecalis) and clinical isolates, E. faecium (K59-68 and K60-39), and S. haemolyticus with minimal inhibitory concentration (MIC) values in the range of 1.5-12.5µg/mL. Remarkably, compounds 1-13 displayed superior activity against K60-39 (MIC = 3.1-6.3µg/mL) than ampicillin (MIC = 25µg/mL), and offer promising potential for the development of accramycin-based antibiotics that target multidrug-resistant Enterococcus clinical isolates. Our results highlight the importance of identifying the roles of regulatory genes in natural product discovery.


The nematode Caenorhabditis elegans normally exists as one of two sexes: self-fertilizing hermaphrodite or male. Development as hermaphrodite or male requires the differentiation of each tissue in a sex-specific way. In this review, I discuss the genetic control of sex determination in a single tissue of C. elegans : the germ line. Sex determination in the germ line depends on the action of two types of genes: - those that act globally in all tissues to direct male or female development and those that act only in the germ line to specify either spermatogenesis or oogenesis. First, I consider a tissue-specific sex-determining gene, fog-1 , which promotes spermatogenesis in the germ line. Second, I consider the regulation of the hermaphrodite pattern of germ ­ line gametogenesis where first sperm and then oocytes are produced.


Sign in / Sign up

Export Citation Format

Share Document