RFLP Maps Based on a Common Set of Clones Reveal Modes of Chromosomal Evolution in Potato and Tomato.

Genetics ◽  
1988 ◽  
Vol 120 (4) ◽  
pp. 1095-1103
Author(s):  
M W Bonierbale ◽  
R L Plaisted ◽  
S D Tanksley

Abstract Potato (Solanum tuberosum L.) and tomato (Lycopersicon esculentum) are members of the Solanaceae (nightshade family) and have the same basic chromosome number (x = 12). However, they cannot be cross-hybridized and, until now, it was unknown how conserved the gene order might be between these two species. We report herein the construction of a genetic linkage map of potato chromosomes based on genomic and cDNA clones from tomato. The potato map was drawn from segregation data derived from the interspecific cross S. phureja X (S. tuberosum X S. chacoense) (2n = 2x = 24), and consists of 135 markers defining 12 distinct linkage groups. Nearly all of the tomato probes tested hybridized to potato DNA, and in most cases, the copy number of the employed clones was the same in both species. Furthermore, all clones mapped to the same linkage group in both species. For nine chromosomes, the order of loci appears to be identical in the two species, while for the other three, intrachromosomal rearrangements are apparent, all of which appear to be paracentric inversions with one breakpoint at or near the centromere. These results are consistent with cytogenetic theory, previously untested in plants, which predicts that paracentric inversions will have the least negative effect on fitness and thus be the most likely form of chromosomal rearrangements to survive through evolutionary time. Linkage maps based on a common set of restriction fragment length polymorphism markers provide a basis for uniting the previously separate disciplines of tomato and potato genetics. Using these maps, it may now be possible to test theories about homologies or orthologies of other genes, including those coding for disease resistance and stress tolerances.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Talita Fernanda Augusto Ribas ◽  
Julio Cesar Pieczarka ◽  
Darren K. Griffin ◽  
Lucas G. Kiazim ◽  
Cleusa Yoshiko Nagamachi ◽  
...  

Abstract Background Thamnophilidae birds are the result of a monophyletic radiation of insectivorous Passeriformes. They are a diverse group of 225 species and 45 genera and occur in lowlands and lower montane forests of Neotropics. Despite the large degree of diversity seen in this family, just four species of Thamnophilidae have been karyotyped with a diploid number ranging from 76 to 82 chromosomes. The karyotypic relationships within and between Thamnophilidae and another Passeriformes therefore remain poorly understood. Recent studies have identified the occurrence of intrachromosomal rearrangements in Passeriformes using in silico data and molecular cytogenetic tools. These results demonstrate that intrachromosomal rearrangements are more common in birds than previously thought and are likely to contribute to speciation events. With this in mind, we investigate the apparently conserved karyotype of Willisornis vidua, the Xingu Scale-backed Antbird, using a combination of molecular cytogenetic techniques including chromosome painting with probes derived from Gallus gallus (chicken) and Burhinus oedicnemus (stone curlew), combined with Bacterial Artificial Chromosome (BAC) probes derived from the same species. The goal was to investigate the occurrence of rearrangements in an apparently conserved karyotype in order to understand the evolutionary history and taxonomy of this species. In total, 78 BAC probes from the Gallus gallus and Taeniopygia guttata (the Zebra Finch) BAC libraries were tested, of which 40 were derived from Gallus gallus macrochromosomes 1–8, and 38 from microchromosomes 9–28. Results The karyotype is similar to typical Passeriformes karyotypes, with a diploid number of 2n = 80. Our chromosome painting results show that most of the Gallus gallus chromosomes are conserved, except GGA-1, 2 and 4, with some rearrangements identified among macro- and microchromosomes. BAC mapping revealed many intrachromosomal rearrangements, mainly inversions, when comparing Willisornis vidua karyotype with Gallus gallus, and corroborates the fissions revealed by chromosome painting. Conclusions Willisornis vidua presents multiple chromosomal rearrangements despite having a supposed conservative karyotype, demonstrating that our approach using a combination of FISH tools provides a higher resolution than previously obtained by chromosome painting alone. We also show that populations of Willisornis vidua appear conserved from a cytogenetic perspective, despite significant phylogeographic structure.


2019 ◽  
Vol 157 (4) ◽  
pp. 239-248 ◽  
Author(s):  
Amanda T. Borges ◽  
Marcelo B. Cioffi ◽  
Luiz A.C. Bertollo ◽  
Rodrigo X. Soares ◽  
Gideão W.W.F. Costa ◽  
...  

Centropomus is the sole genus of the Centropomidae family (Teleostei), comprising 12 species widely distributed throughout the Western Atlantic and Eastern Pacific, with 6 of them occurring in the Western Atlantic in extensive sympatry. Their life history and phylogenetic relationships are well characterized; however, aspects of chromosomal evolution are still unknown. Here, cytogenetic analyses of 2 Centropomus species of great economic value (C. undecimalis and C. mexicanus) were performed using conventional (Giemsa, Ag-NOR, and fluorochrome staining, C- and replication banding) and molecular (chromosomal mapping of 18S and 5S rDNA, H2A-H2B and H3 hisDNA, and (TTAGGG)n repeats) approaches. The karyotypes of both species were composed of 48 solely acrocentric chromosomes (2n = 48; FN = 48), but the single ribosomal site was located in varying positions in the long arms of the second largest chromosome pair. Replication bands were generally similar, although conspicuous differences were observed in some chromosome regions. In both species, the histone H3 genes were located on 3 apparently homeologous chromosome pairs, but the exact position of these clusters differed slightly. Interspecific hisDNA and rDNA site displacements can indicate the occurrence of multiple paracentric inversions during the evolutionary diversification of the Centropomus genomes. Although the karyotypes remained similar in both species, our data demonstrate an unsuspected microstructural reorganization between them, driven most likely by a series of paracentric inversions.


1975 ◽  
Vol 28 (1) ◽  
pp. 89 ◽  
Author(s):  
Max Kinga ◽  
Dennis King

The karyotypes have been determined of 16 of the 32 species of the genus Varanus, including animals from Africa, Israel, Malaya and Australia. A constant chromosome number of 2n = 40 was observed. The karyotype is divided into eight pairs of large chromosomes and 12 pairs of microchromosomes. A series of chromosomal rearrangements have become established in both size groups of the karyotype and are restricted to centromere shifts, probably caused by pericentric inversion. Species could be placed in one of six distinct karyotype groups which are differentiated by these rearrangements and whose grouping does not always correspond with the current taxonomy. An unusual sex chromosome system of the ZZjZW type was present in a number of the species examined.


Genes ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 259 ◽  
Author(s):  
Karolina Susek ◽  
Wojciech Bielski ◽  
Katarzyna B. Czyż ◽  
Robert Hasterok ◽  
Scott A. Jackson ◽  
...  

Plant genome evolution can be very complex and challenging to describe, even within a genus. Mechanisms that underlie genome variation are complex and can include whole-genome duplications, gene duplication and/or loss, and, importantly, multiple chromosomal rearrangements. Lupins (Lupinus) diverged from other legumes approximately 60 mya. In contrast to New World lupins, Old World lupins show high variability not only for chromosome numbers (2n = 32–52), but also for the basic chromosome number (x = 5–9, 13) and genome size. The evolutionary basis that underlies the karyotype evolution in lupins remains unknown, as it has so far been impossible to identify individual chromosomes. To shed light on chromosome changes and evolution, we used comparative chromosome mapping among 11 Old World lupins, with Lupinus angustifolius as the reference species. We applied set of L. angustifolius-derived bacterial artificial chromosome clones for fluorescence in situ hybridization. We demonstrate that chromosome variations in the species analyzed might have arisen from multiple changes in chromosome structure and number. We hypothesize about lupin karyotype evolution through polyploidy and subsequent aneuploidy. Additionally, we have established a cytogenomic map of L. angustifolius along with chromosome markers that can be used for related species to further improve comparative studies of crops and wild lupins.


Genome ◽  
2000 ◽  
Vol 43 (2) ◽  
pp. 255-263 ◽  
Author(s):  
Lyn G Cook

Chromosome number reflects strong constraints on karyotype evolution, unescaped by the majority of animal taxa. Although there is commonly chromosomal polymorphism among closely related taxa, very large differences in chromosome number are rare. This study reports one of the most extensive chromosomal ranges yet reported for an animal genus. Apiomorpha Rübsaamen (Hemiptera: Coccoidea: Eriococcidae), an endemic Australian gall-inducing scale insect genus, exhibits an extraordinary 48-fold variation in chromosome number with diploid numbers ranging from 4 to about 192. Diploid complements of all other eriococcids examined to date range only from 6 to 28. Closely related species of Apiomorpha usually have very different karyotypes, to the extent that the variation within some species- groups is as great as that across the entire genus. There is extensive chromosomal variation among populations within 17 of the morphologically defined species of Apiomorpha indicating the existence of cryptic species-complexes. The extent and pattern of karyotypic variation suggests rapid chromosomal evolution via fissions and (or) fusions. It is hypothesized that chromosomal rearrangements in Apiomorpha species may be associated with these insects' tracking the radiation of their speciose host genus, Eucalyptus. Key words: Apiomorpha, cytogenetics, chromosomal evolution, holocentric.


Genetics ◽  
2003 ◽  
Vol 165 (4) ◽  
pp. 1745-1759 ◽  
Author(s):  
Juan J Infante ◽  
Kenneth M Dombek ◽  
Laureana Rebordinos ◽  
Jesús M Cantoral ◽  
Elton T Young

Abstract The relative importance of gross chromosomal rearrangements to adaptive evolution has not been precisely defined. The Saccharomyces cerevisiae flor yeast strains offer significant advantages for the study of molecular evolution since they have recently evolved to a high degree of specialization in a very restrictive environment. Using DNA microarray technology, we have compared the genomes of two prominent variants of S. cerevisiae flor yeast strains. The strains differ from one another in the DNA copy number of 116 genomic regions that comprise 38% of the genome. In most cases, these regions are amplicons flanked by repeated sequences or other recombination hotspots previously described as regions where double-strand breaks occur. The presence of genes that confer specific characteristics to the flor yeast within the amplicons supports the role of chromosomal rearrangements as a major mechanism of adaptive evolution in S. cerevisiae. We propose that nonallelic interactions are enhanced by ethanol- and acetaldehyde-induced double-strand breaks in the chromosomal DNA, which are repaired by pathways that yield gross chromosomal rearrangements. This mechanism of chromosomal evolution could also account for the sexual isolation shown among the flor yeast.


2019 ◽  
Vol 17 (2) ◽  
Author(s):  
Josiane B. Traldi ◽  
Roberto L. Lui ◽  
Juliana de F. Martinez ◽  
Marcelo R. Vicari ◽  
Viviane Nogaroto ◽  
...  

ABSTRACT The transposable elements (TE) have been widely applied as physical chromosome markers. However, in Loricariidae there are few physical mapping analyses of these elements. Considering the importance of transposable elements for chromosomal evolution and genome organization, this study conducted the physical chromosome mapping of retroelements (RTEs) Rex1, Rex3 and Rex6 in seven species of the genus Harttia and four species of the genus Hypostomus, aiming to better understand the organization and dynamics of genomes of Loricariidae species. The results showed an intense accumulation of RTEs Rex1, Rex3 and Rex6 and dispersed distribution in heterochromatic and euchromatic regions in the genomes of the species studied here. The presence of retroelements in some chromosomal regions suggests their participation in various chromosomal rearrangements. In addition, the intense accumulation of three retroelements in all species of Harttia and Hypostomus, especially in euchromatic regions, can indicate the participation of these elements in the diversification and evolution of these species through the molecular domestication by genomes of hosts, with these sequences being a co-option for new functions.


2021 ◽  
Vol 15 (4) ◽  
pp. 413-428
Author(s):  
Gisele Amaro Teixeira ◽  
Luísa Antônia Campos Barros ◽  
Hilton Jeferson Alves Cardoso de Aguiar ◽  
Denilce Meneses Lopes

Cytogenetic studies on fungus-farming ants have shown remarkable karyotype diversity, suggesting different chromosomal rearrangements involved in karyotype evolution in some genera. A notable cytogenetic characteristic in this ant group is the presence of GC-rich heterochromatin in the karyotypes of some ancient and derivative species. It was hypothesized that this GC-rich heterochromatin may have a common origin in fungus-farming ants, and the increase in species studied is important for understanding this question. In addition, many genera within the subtribe Attina have few or no cytogenetically studied species; therefore, the processes that shaped their chromosomal evolution remain obscure. Thus, in this study, we karyotyped, through classical and molecular cytogenetic techniques, the fungus-farming ants Cyphomyrmex transversus Emery, 1894, Sericomyrmex maravalhas Ješovnik et Schultz, 2017, and Mycetomoellerius relictus (Borgmeier, 1934), to provide insights into the chromosomal evolution in these genera and to investigate the presence the GC-rich heterochromatin in these species. Cyphomyrmex transversus (2n = 18, 10m + 2sm + 6a) and S. maravalhas (2n = 48, 28m + 20sm) showed karyotypes distinct from other species from their genera. Mycetomoellerius relictus (2n = 20, 20m) presented the same karyotype as the colonies previously studied. Notably, C. transversus presented the lowest chromosomal number for the genus and a distinct karyotype from the other two previously observed for this species, showing the existence of a possible species complex and the need for its taxonomic revision. Chromosomal banding data revealed GC-rich heterochromatin in all three species, which increased the number of genera with this characteristic, supporting the hypothesis of a common origin of GC-rich heterochromatin in Attina. Although a single chromosomal pair carries rDNA genes in all studied species, the positions of these rDNA clusters varied. The rDNA genes were located in the intrachromosomal region in C. transversus and M. relictus, and in the terminal region of S. maravalhas. The combination of our molecular cytogenetic data and observations from previous studies corroborates that a single rDNA site located in the intrachromosomal region is a plesiomorphic condition in Attina. In addition, cytogenetic data obtained suggest centric fission events in Sericomyrmex Mayr, 1865, and the occurrence of inversions as the origin of the location of the ribosomal genes in M. relictus and S. maravalhas. This study provides new insights into the chromosomal evolution of fungus-farming ants.


2020 ◽  
Vol 18 (2) ◽  
Author(s):  
Larissa Glugoski ◽  
Geize Deon ◽  
Stephane Schott ◽  
Marcelo R. Vicari ◽  
Viviane Nogaroto ◽  
...  

ABSTRACT Ancistrus is a specious genus of armored catfishes that has been extensively used for cytogenetic studies in the last 17 years. A comparison of the extensive karyotypic plasticity within this genus is presented with new cytogenetic analysis for Ancistrus cf. multispinis and Ancistrus aguaboensis. This study aims to improve our understanding of chromosomal evolution associated with changes in the diploid number (2n) and the dispersion of ribosomal DNAs (rDNAs) within Ancistrus. Ancistrus cf. multispinis and A. aguaboensis exhibit 2n of 52 and 50 chromosomes, respectively. Given that A. cf. multispinis shares a 2n = 52 also found in Pterygoplichthyini, the sister group for Ancistrini, a Robertsonian (Rb) fusion event is proposed for the 2n reduction in A. aguaboensis. 5S rDNAs pseudogenes sites have already been associated with Rb fusion in Ancistrus and our analysis suggests that the 2n reduction in A. aguaboensis was triggered by double strand breaks (DSBs) and chromosomal rearrangements at 5S rDNA sites. The presence of evolutionary breakpoint regions (EBRs) into rDNA cluster is proposed to explain part of the Rb fusion in Ancistrus. Cytogenetic data presented extends the diversity already documented in Ancistrus to further understand the role of chromosomal rearrangements in the diversification of Ancistrini.


2019 ◽  
Vol 488 (6) ◽  
pp. 685-689
Author(s):  
M. V. Efimova ◽  
E. A. Mukhamatdinova ◽  
I. S. Kovtun ◽  
F. Kabil ◽  
Y. V. Medvedeva ◽  
...  

The protective effect of jasmonic acid (JA) was evaluated under stress (100 mM NaCl) condition. The investigations were carried on potato plants (Solanum tuberosum L.) of the mid-season variety Lugovskoy. Plant-regenerants were grafted and cultured in test tubes on modified Murashige-Skoog agar medium in the absence (control) or in the presence of JA at concentrations of 0.001; 0.1 and 10 M under optimal growing conditions or with the addition of NaCl. After 28 days of cultivation, growth (length of stem and root, number of tiers and leaves, plant mass) and physiological (proline content and photosynthetic pigments, determination of the osmotic potential of cell exudate) of the plants were assessed. For the first time it has been shown that jasmonic acid (0.1 and 10 M) manifests a pronounced protective effect on potato plants under salt stress condition. The protective effect based on the partial removal of the salt negative effect on the main photosynthetic pigments and the maintenance of the osmotic status of cell contents during salinization.


Sign in / Sign up

Export Citation Format

Share Document