Molecular genetic studies of the Cdc7 protein kinase and induced mutagenesis in yeast.

Genetics ◽  
1992 ◽  
Vol 132 (1) ◽  
pp. 53-62 ◽  
Author(s):  
R E Hollingsworth ◽  
R M Ostroff ◽  
M B Klein ◽  
L A Niswander ◽  
R A Sclafani

Abstract The Saccharomyces cerevisiae CDC7 gene encodes a protein kinase that functions in DNA replication, repair, and meiotic recombination. The sequence of several temperature-sensitive (ts) cdc7 mutations was determined and correlated with protein kinase consensus domain structure. The positions of these ts alleles suggests some general principles for predicting ts protein kinase mutations. Pedigree segregation lag analysis demonstrated that all of the mutant proteins are less active or less stable than wild-type Cdc7p. Two new mutations were constructed, one by site-directed and the other by insertional mutagenesis. All of the cdc7 mutants were assayed for induced mutagenesis in response to mutagenic agents at the permissive temperature. Some cdc7 mutants were found to be hypomutable, while others are hypermutable. The differences in mutability are observed most clearly when log phase cells are used. Both hypo- and hypermutability are recessive to wild type. Cdc7p may participate in DNA repair by phosphorylating repair enzymes or by altering chromatin structure to allow accessibility to DNA lesions.

1997 ◽  
Vol 6 (3) ◽  
pp. 231-238 ◽  
Author(s):  
M.E. Truckenmiller ◽  
Ora Dillon-Carter ◽  
Carlo Tornatore ◽  
Henrietta Kulaga ◽  
Hidetoshi Takashima ◽  
...  

In vitro growth properties of three CNS-derived cell lines were compared under a variety of culture conditions. The M213-20 and J30a cell lines were each derived from embryonic CNS culture with the temperature-sensitive (ts) allele of SV40 large T antigen, tsA58, while the A7 cell line was immortalized using wild-type SV40 large T antigen. Cells immortalized with tsA58 SV40 large T proliferate at the permissive temperature, 33° C, while growth is expected to be suppressed at the nonpermissive temperature, 39.5°C. Both the M213-20 and J30a cell lines were capable of proliferating at 39.5°C continuously for up to 6 mo. All three cell lines showed no appreciable differences in growth rates related to temperature over a 7-day period in either serum-containing or defined serum-free media. The percentage of cells in S-phase of the cell cycle did not decrease or was elevated at 39.5°C for all three cell lines. After 3 wk at 39.5°C, the three cell lines also showed positive immunostaining using two monoclonal antibodies reacting with different epitopes of SV40 large T antigen. Double strand DNA sequence analyses of a 300 base pair (bp) fragment of the large T gene from each cell line, which included the ts locus, revealed mutations in both the J30a and M213-20 cell lines. The J30a cell line ts mutation had reverted to wild type, and two additional loci with bp substitutions with predicted amino acid changes were also found. While the ts mutation of the M213-20 cells was retained, an additional bp substitution with a predicted amino acid change was found. The A7 cell line sequence was identical to the reference wild-type sequence. These findings suggest that (a) nucleic acid sequences in the temperature-sensitive region of the tsA58 allele of SV40 large T are not necessarily stable, and (b) temperature sensitivity of cell lines immortalized with tsA58 is not necessarily retained.


1995 ◽  
Vol 15 (10) ◽  
pp. 5635-5644 ◽  
Author(s):  
Y Liu ◽  
N Mathias ◽  
C N Steussy ◽  
M G Goebl

Ubiquitin-conjugating (E2) enzymes contain several regions within their catalytic domains that are highly conserved. However, within some of these conserved regions are several residues that may be used to define different classes of catalytic domains for the E2 enzymes. One class can be defined by the Ubc1 protein, which contains K-65, D-90, and D-120, while the corresponding positions within the Cdc34 (Ubc3) protein, which defines a second class of enzymes, contain S-73, S-97, and S-139, respectively. The presence of these differences within otherwise highly conserved regions of this family suggests that these residues may be critical for the specificity of Cdc34 function or regulation. Therefore, we have constructed a series of cdc34 alleles encoding mutant proteins in which these serine residues have been changed to other amino acid residues, including alanine and aspartic acid. In vivo complementation studies showed that S-97, which lies near the active site C-95, is essential for Cdc34 function. The addition of a second mutation in CDC34, which now encoded both the S97D and S73K changes, restored partial function to the Cdc34 enzyme. Moreover, the deletion of residues 103 to 114 within Cdc34, which are not present in the Ubc1-like E2s, allowed the S73K/S97D mutant to function as efficiently as wild-type Cdc34 protein. Finally, the cloning and sequencing of the temperature-sensitive alleles of CDC34 indicated that A-62 is also unique to the Cdc34 class of E2 enzymes and that mutations at this position can be detrimental to Cdc34 function. Our results suggest that several key residues within conserved regions of the E2 enzyme family genetically interact with each other and define a class of E2 catalytic domains.


1985 ◽  
Vol 5 (4) ◽  
pp. 902-905
Author(s):  
M Narkhammar ◽  
R Hand

ts BN-2 is a temperature-sensitive hamster cell line that is defective in DNA synthesis at the restrictive temperature. The mutant expresses its defect during in vitro replication in whole-cell lysates. Addition of a high-salt-concentration extract from wild-type BHK-21, revertant RBN-2, or CHO cells to mutant cells lysed with 0.01% Brij 58 increased the activity in the mutant three- to fourfold, so that it reached 85% of the control value, and restored replicative synthesis. The presence of extract had an insignificant effect on wild-type and revertant replication and on mutant replication at the permissive temperature. Extract prepared from mutant cells was less effective than the wild-type cell extract was. Also, the stimulatory activity was more heat labile in the mutant than in the wild-type extract. Nuclear extract was as active as whole-cell extract.


2002 ◽  
Vol 184 (3) ◽  
pp. 695-705 ◽  
Author(s):  
Joseph C. Chen ◽  
Michael Minev ◽  
Jon Beckwith

ABSTRACT FtsQ, a 276-amino-acid, bitopic membrane protein, is one of the nine proteins known to be essential for cell division in gram-negative bacterium Escherichia coli. To define residues in FtsQ critical for function, we performed random mutagenesis on the ftsQ gene and identified four alleles (ftsQ2, ftsQ6, ftsQ15, and ftsQ65) that fail to complement the ftsQ1(Ts) mutation at the restrictive temperature. Two of the mutant proteins, FtsQ6 and FtsQ15, are functional at lower temperatures but are unable to localize to the division site unless wild-type FtsQ is depleted, suggesting that they compete poorly with the wild-type protein for septal targeting. The other two mutants, FtsQ2 and FtsQ65, are nonfunctional at all temperatures tested and have dominant-negative effects when expressed in an ftsQ1(Ts) strain at the permissive temperature. FtsQ2 and FtsQ65 localize to the division site in the presence or absence of endogenous FtsQ, but they cannot recruit downstream cell division proteins, such as FtsL, to the septum. These results suggest that FtsQ2 and FtsQ65 compete efficiently for septal targeting but fail to promote the further assembly of the cell division machinery. Thus, we have separated the localization ability of FtsQ from its other functions, including recruitment of downstream cell division proteins, and are beginning to define regions of the protein responsible for these distinct capabilities.


1996 ◽  
Vol 16 (3) ◽  
pp. 892-898 ◽  
Author(s):  
D J Hockman ◽  
M C Schultz

Casein kinase II (CKII) is a ubiquitous and highly conserved serine/threonine protein kinase found in the nucleus and cytoplasm of most cells. Using a combined biochemical and genetic approach in the yeast Saccharomyces cerevisiae, we assessed the role of CKII in specific transcription by RNA polymerases I, II, and III. CKII is not required for basal transcription by RNA polymerases I and II but is important for polymerase III transcription. Polymerase III transcription is high in extracts with normal CKII activity but low in extracts from a temperature-sensitive mutant that has decreased CKII activity due to a lesion in the enzyme's catalytic alpha' subunit. Polymerase III transcription of 5S rRNA and tRNA templates in the temperature-sensitive extract is rescued by purified, wild-type CKII. An inhibitor of CKII represses polymerase III transcription in wild-type extract, and this repression is partly overcome by supplementing reaction mixtures with active CKII. Finally, we show that polymerase III transcription in vivo is impaired when CKII is inactivated. Our results demonstrate that CKII, an oncogenic protein kinase previously implicated in cell cycle and growth control, is required for high-level transcription by RNA polymerase III.


2005 ◽  
Vol 16 (3) ◽  
pp. 1355-1365 ◽  
Author(s):  
Masaya Take-uchi ◽  
Yuri Kobayashi ◽  
Koutarou D. Kimura ◽  
Takeshi Ishihara ◽  
Isao Katsura

The defecation behavior of the nematode Caenorhabditis elegans is controlled by a 45-s ultradian rhythm. An essential component of the clock that regulates the rhythm is the inositol trisphosphate receptor in the intestine, but other components remain to be discovered. Here, we show that the flr-4 gene, whose mutants exhibit very short defecation cycle periods, encodes a novel serine/threonine protein kinase with a carboxyl terminal hydrophobic region. The expression of functional flr-4::GFP was detected in the intestine, part of pharyngeal muscles and a pair of neurons, but expression of flr-4 in the intestine was sufficient for the wild-type phenotype. Furthermore, laser killing of the flr-4–expressing neurons did not change the defecation phenotypes of wild-type and flr-4 mutant animals. Temperature-shift experiments with a temperature-sensitive flr-4 mutant suggested that FLR-4 acts in a cell-functional rather than developmental aspect in the regulation of defecation rhythms. The function of FLR-4 was impaired by missense mutations in the kinase domain and near the hydrophobic region, where the latter allele seemed to be a weak antimorph. Thus, a novel protein kinase with a unique structural feature acts in the intestine to increase the length of defecation cycle periods.


2004 ◽  
Vol 78 (1) ◽  
pp. 257-265 ◽  
Author(s):  
Patricia Szajner ◽  
Andrea S. Weisberg ◽  
Bernard Moss

ABSTRACT Temperature-sensitive mutants of vaccinia virus, with genetic changes that map to the open reading frame encoding the F10 protein kinase, exhibit a defect at an early stage of viral morphogenesis. To further study the role of the enzyme, we constructed recombinant vaccinia virus vF10V5i, which expresses inducible V5 epitope-tagged F10 and is dependent on a chemical inducer for plaque formation and replication. In the absence of inducer, viral membrane formation was delayed and crescents and occasional immature forms were detected only late in infection. When the temperature was raised from 37 to 39°C, the block in membrane formation persisted throughout the infection. The increased stringency may be explained by a mild temperature sensitivity of the wild-type F10 kinase, which reduced the activity of the very small amount expressed in the absence of inducer, or by the thermolability of an unphosphorylated kinase substrate or uncomplexed F10-interacting protein. Further analyses demonstrated that tyrosine and threonine phosphorylation of the A17 membrane component was inhibited in the absence of inducer. The phosphorylation defect could be overcome by transfection of plasmids that express wild-type F10, but not by plasmids that express F10 with single amino acid substitutions that abolished catalytic activity. Although the mutated forms of F10 were stable and concentrated in viral factories, only the wild-type protein complemented the assembly and replication defects of vF10V5i in the absence of inducer. These studies provide evidence for an essential catalytic role of the F10 kinase in vaccinia virus morphogenesis.


2000 ◽  
Vol 46 (6) ◽  
pp. 577-583 ◽  
Author(s):  
Takashi Kubo ◽  
Toshiko Aiso ◽  
Reiko Ohki

In the divE mutant, which has a temperature-sensitive mutation in the tRNA1Ser gene, the synthesis of beta-galactosidase is dramatically decreased at the non-permissive temperature. In Escherichia coli, the UCA codon is only recognized by tRNA1Ser. Several genes containing UCA codons are normally expressed at 42°C in the divE mutant. Therefore, it is unlikely that the defect is due to the general translational deficiency of the mutant tRNA1Ser. In this study, we constructed mutant lacZ genes, in which one or several UCA codons at eight positions were replaced with other serine codons such as UCU or UCC, and we examined the expression of these mutant genes in the divE mutant. We found that a single UCA codon at position 6 or 462 was sufficient to cause the same level of reduced beta-galactosidase synthesis as that of the wild-type lacZ gene, and that the defect in beta-galactosidase synthesis was accompanied by a low level of lacZ mRNA. It was also found that introduction of an rne-1 pnp-7 double mutation restored the expression of mutant lacZ genes with only UCA codons at position 6 or 462. A polarity suppressor mutation in the rho gene had no effect on the defect in lacZ gene expression in the divE mutant. We propose a model to explain these results.Key words: divE gene, tRNA1Ser, lacZ gene expression, UCA codon.


1998 ◽  
Vol 72 (10) ◽  
pp. 7885-7894 ◽  
Author(s):  
Françoise Fischer ◽  
Carola F. Stegen ◽  
Paul S. Masters ◽  
William A. Samsonoff

ABSTRACT Expression studies have shown that the coronavirus small envelope protein E and the much more abundant membrane glycoprotein M are both necessary and sufficient for the assembly of virus-like particles in cells. As a step toward understanding the function of the mouse hepatitis virus (MHV) E protein, we carried out clustered charged-to-alanine mutagenesis on the E gene and incorporated the resulting mutations into the MHV genome by targeted recombination. Of the four possible clustered charged-to-alanine E gene mutants, one was apparently lethal and one had a wild-type phenotype. The two other mutants were partially temperature sensitive, forming small plaques at the nonpermissive temperature. Revertant analyses of these two mutants demonstrated that the created mutations were responsible for the temperature-sensitive phenotype of each and provided support for possible interactions among E protein monomers. Both temperature-sensitive mutants were also found to be markedly thermolabile when grown at the permissive temperature, suggesting that there was a flaw in their assembly. Most significantly, when virions of one of the mutants were examined by electron microscopy, they were found to have strikingly aberrant morphology in comparison to the wild type: most mutant virions had pinched and elongated shapes that were rarely seen among wild-type virions. These results demonstrate an important, probably essential, role for the E protein in coronavirus morphogenesis.


1988 ◽  
Vol 106 (4) ◽  
pp. 1171-1183 ◽  
Author(s):  
T Hirano ◽  
Y Hiraoka ◽  
M Yanagida

A temperature-sensitive mutant nuc2-663 of the fission yeast Schizosaccharomyces pombe specifically blocks mitotic spindle elongation at restrictive temperature so that nuclei in arrested cells contain a short uniform spindle (approximately 3-micron long), which runs through a metaphase plate-like structure consisting of three condensed chromosomes. In the wild-type or in the mutant cells at permissive temperature, the spindle is fully extended approximately 15-micron long in anaphase. The nuc2' gene was cloned in a 2.4-kb genomic DNA fragment by transformation, and its complete nucleotide sequence was determined. Its coding region predicts a 665-residues internally repeating protein (76.250 mol wt). By immunoblots using anti-sera raised against lacZ-nuc2+ fused proteins, a polypeptide (designated p67; 67,000 mol wt) encoded by nuc2+ is detected in the wild-type S. pombe extracts; the amount of p67 is greatly increased when multi-copy or high-expression plasmids carrying the nuc2+ gene are introduced into the S. pombe cells. Cellular fractionation and Percoll gradient centrifugation combined with immunoblotting show that p67 cofractionates with nuclei and is enriched in resistant structure that is insoluble in 2 M NaCl, 25 mM lithium 3,5'-diiodosalicylate, and 1% Triton but is soluble in 8 M urea. In nuc2 mutant cells, however, soluble p76, perhaps an unprocessed precursor, accumulates in addition to insoluble p67. The role of nuc2+ gene may be to interconnect nuclear and cytoskeletal functions in chromosome separation.


Sign in / Sign up

Export Citation Format

Share Document