scholarly journals Complex function and expression of Delta during Drosophila oogenesis.

Genetics ◽  
1993 ◽  
Vol 133 (4) ◽  
pp. 967-978 ◽  
Author(s):  
L B Bender ◽  
P J Kooh ◽  
M A Muskavitch

Abstract Delta (Dl) encodes a cell surface protein that mediates cell-cell interactions central to the specification of a variety of cell fates during embryonic and postembryonic development of Drosophila melanogaster. We find that the Delta protein is expressed intermittently in follicle cells and in germ-line cells during stages 1-10 of oogenesis. Furthermore, Delta expression during oogenesis can be correlated with a number of morphogenetic defects associated with sterility observed in Dl mutant females, including failure of stalk formation within the germarium and subsequent fusion of egg chambers, necrosis in germ-line cells, and multiphasic embryonic arrest of fertilized eggs. We have also identified a Dl mutation that leads to context-dependent defects in Dl function during oogenesis. Direct comparison of Delta protein expression with that of the Notch protein in the ovary reveals substantial, but incomplete, coincidence of expression patterns in space and time. We discuss possible roles for the Delta protein in cell-cell interactions required for cell fate specification processes during oogenesis in light of available developmental and histochemical data.

2021 ◽  
Author(s):  
Mattias Malaguti ◽  
Rosa Portero Migueles ◽  
Jennifer Annoh ◽  
Daina Sadurska ◽  
Guillaume Blin ◽  
...  

ABSTRACTCell-cell interactions govern differentiation and cell competition in pluripotent cells during early development, but the investigation of such processes is hindered by a lack of efficient analysis tools. Here we introduce SyNPL: clonal pluripotent stem cell lines which employ optimised Synthetic Notch (SynNotch) technology to report cell-cell interactions between engineered “sender” and “receiver” cells in cultured pluripotent cells and chimaeric mouse embryos. A modular design makes it straightforward to adapt the system for programming differentiation decisions non-cell-autonomously in receiver cells in response to direct contact with sender cells. We demonstrate the utility of this system by enforcing neuronal differentiation at the boundary between two cell populations. In summary, we provide a new tool which could be used to identify cell interactions and to profile changes in gene or protein expression that result from direct cell-cell contact with defined cell populations in culture and in early embryos, and which can be adapted to generate synthetic patterning of cell fate decisions.


2000 ◽  
Vol 113 (21) ◽  
pp. 3781-3794 ◽  
Author(s):  
D. Zhao ◽  
D. Clyde ◽  
M. Bownes

Signalling by the Gurken/Epidermal Growth Factor Receptor (Grk/EGFR) pathway is involved in epithelial cell fate decision, morphogenesis and axis establishment in Drosophila oogenesis. In the search for genes downstream of the Grk/EGFR signal transduction pathway (STP), we isolated a number of genes that are components of other STPs. One of them is a known gene, called fringe (fng). Drosophila fng encodes a putative secreted protein that is required at other development stages for mediating interactions between dorsal and ventral cells via Notch signalling. Here we show that fng has a dynamic expression pattern in oogenesis and that its expression in specific groups of follicle cells along the anterior-posterior and dorsal-ventral axes is defined by the repression of fng by Grk. Interfering with fng expression using antisense RNA experiments resulted in a typical fng mutant phenotype in the wing, and malformed egg chambers and abnormal organisation of the follicle cells in the ovaries, revealing that fng is essential in oogenesis for the proper formation of the egg chamber and for epithelial morphogenesis. This has been confirmed by re-examination of fng mutants and analysis of fng mutant clones in oogenesis.


Blood ◽  
1997 ◽  
Vol 89 (10) ◽  
pp. 3624-3635 ◽  
Author(s):  
Timothy W. Austin ◽  
Gregg P. Solar ◽  
Francis C. Ziegler ◽  
Linda Liem ◽  
William Matthews

Abstract The microenvironment is a key regulator of hematopoietic stem cells (HSCs) and is a likely source of extracellular factors that control stem cell fate. A better understanding of these microenvironmental factors may come from investigations of developmental cell fate determination in which the critical roles of cell-cell interactions of multipotential cells have been shown. The Wnt gene family is known to regulate the cell fate and cell-cell interactions of multipotential cells in a variety of tissues. Expression of Wnts and of their putative receptors encoded by murine homologs of the Drosophila frizzled gene in hematopoietic tissues was examined by reverse transcriptase-polymerase chain reaction. Wnt-5a and Wnt-10b were expressed in day-11 murine yolk sac, day-14 fetal liver, and fetal liver AA4+ cells. The expression profiles of four murine frizzled homologs, Mfz3-7, were nearly identical to that of Wnt-5a and Wnt-10b. Notably, Wnt-10b was expressed in the fetal liver AA4+ Sca+ c-kit+ (flASK) HSC population. A role for Wnts in HSC fate determination was studied by treatment of HSC populations in culture with soluble WNT proteins. The addition of conditioned media from cells transfected with Wnt-1, Wnt-5a, or Wnt-10b cDNAs to cultures of flASK cells stimulated a sevenfold, eightfold, and 11-fold expansion in cell number, respectively, relative to control media. Removal of WNT-5a from this media by immunodepletion depleted the stimulatory activity from the media, whereas addition of a partially purified WNT-5a stimulated a fivefold expansion relative to control cells. Transduction of flASK cells with a retrovirus bearing a Wnt-5a cDNA enhanced proliferation. We conclude that WNTs stimulate the survival/proliferation of hematopoietic progenitors, demonstrating that WNTs comprise a novel class of hematopoietic cell regulators.


Development ◽  
1995 ◽  
Vol 121 (9) ◽  
pp. 3023-3033 ◽  
Author(s):  
K.R. Rittenhouse ◽  
C.A. Berg

Subcellular localization of gene products and cell migration are both critical for pattern formation during development. The bullwinkle gene is required in Drosophila for disparate aspects of these processes. In females mutant at the bullwinkle locus, the follicle cells that synthesize the dorsal eggshell filaments do not migrate properly, creating short, broad structures. Mosaic analyses demonstrate that wild-type BULLWINKLE function is required in the germ line for these migrations. Since the mRNA for gurken, the putative ligand that signals dorsal follicle cell fate, is correctly localized in bullwinkle mutants, we conclude that our bullwinkle alleles do not affect the dorsoventral polarity of the oocyte and thus must be affecting the follicle cell migrations in some other way. In addition, the embryos that develop from bullwinkle mothers are bicaudal. A KINESIN:beta-GALACTOSIDASE fusion protein is correctly localized to the posterior pole of bullwinkle oocytes during stage 9. Thus, the microtubule structure of the oocyte and general transport along it do not appear to be disrupted prior to cytoplasmic streaming. Unlike other bicaudal mutants, oskar mRNA is localized correctly to the posterior pole of the oocyte at stage 10. By early embryogenesis, however, some oskar mRNA is mislocalized to the anterior pole. Consistent with the mislocalization of oskar mRNA, a fraction of the VASA protein and nanos mRNA are also mislocalized to the anterior pole of bullwinkle embryos. Mislocalization of nanos mRNA to the anterior is dependent on functional VASA protein. Although the mirror-image segmentation defects appear to result from the action of the posterior group genes, germ cells are not formed at the anterior pole. The bicaudal phenotype is also germ-line dependent for bullwinkle. We suspect that BULLWINKLE interacts with the cytoskeleton and extracellular matrix and is necessary for gene product localization and cell migration during oogenesis after stage 10a.


Development ◽  
1992 ◽  
Vol 116 (4) ◽  
pp. 953-966 ◽  
Author(s):  
R.L. Bennett ◽  
F.M. Hoffmann

Mutations in the Drosophila Abelson tyrosine kinase have pleiotropic effects late in development that lead to pupal lethality or adults with a reduced life span, reduced fecundity and rough eyes. We have examined the expression of the abl protein throughout embryonic and pupal development and analyzed mutant phenotypes in some of the tissues expressing abl. abl protein, present in all cells of the early embryo as the product of maternally contributed mRNA, transiently localizes to the region below the plasma membrane cleavage furrows as cellularization initiates. The function of this expression is not yet known. Zygotic expression of abl is first detected in the post-mitotic cells of the developing muscles and nervous system midway through embryogenesis. In later larval and pupal stages, abl protein levels are also highest in differentiating muscle and neural tissue including the photoreceptor cells of the eye. abl protein is localized subcellularly to the axons of the central nervous system, the embryonic somatic muscle attachment sites and the apical cell junctions of the imaginal disk epithelium. Evidence for abl function was obtained by analysis of mutant phenotypes in the embryonic somatic muscles and the eye imaginal disk. The expression patterns and mutant phenotypes indicate a role for abl in establishing and maintaining cell-cell interactions.


Development ◽  
1989 ◽  
Vol 107 (Supplement) ◽  
pp. 53-57
Author(s):  
Judith Austin ◽  
Eleanor M. Maine ◽  
Judith Kimble

Cell–cell interactions play a significant role in controlling cell fate during development of the nematode Caenorhabditis elegans. It has been found that two genes, glp-1 and lin-12, are required for many of these decisions, glp-1 is required for induction of mitotic proliferation in the germline by the somatic distal tip cell and for induction of the anterior pharynx early in embryogenesis. lin-12 is required for the interactions between cells of equivalent developmental potential, which allow them to take on different fates. Comparison of these two genes on a molecular level indicates that they are similar in sequence and organization, suggesting that the mechanisms of these two different sets of cell–cell interactions are similar.


Genetics ◽  
1995 ◽  
Vol 140 (1) ◽  
pp. 207-217 ◽  
Author(s):  
E Johnson ◽  
S Wayne ◽  
R Nagoshi

Abstract Phenotypic and genetic analyses demonstrate that fs (1) Yb activity is required in the soma for the development of a subset of ovarian follicle cells and to support later stages of egg maturation. Mutations in fs (1) Yb cause a range of ovarian phenotypes, from the improper segregation of egg chambers to abnormal dorsal appendage formation. The mutant phenotypes associated with fs (1) Yb are very similar to the ovarian aberrations produced by temperature-sensitive alleles of Notch and Delta. Possible functional or regulatory interactions between fs (1) Yb and Notch are suggested by genetic studies. A duplication of the Notch locus partially suppresses the female-sterility caused by fs (1) Yb mutations, while reducing Notch dosage makes the fs (1) Yb mutant phenotype more severe. In addition, fs (1) Yb alleles also interact with genes that are known to act with or regulate Notch activity, including Delta, daughterless, and mastermind. However, differences between the mutant ovarian phenotype of fs (1) Yb and that of Notch or Delta indicate that the genes do not have completely overlapping functions in the ovary. We propose that fs (1) Yb acts as an ovary-specific factor that determines follicle cell fate.


1993 ◽  
Vol 339 (1288) ◽  
pp. 159-164 ◽  

The Y-linked gene Sry acts during a critical period of gonadal differentiation to divert the normal or default pathway of gene activity that would otherwise lead to the development of ovaries into one that leads to the development of testes. It acts cell autonomously, probably within the cell lineage that gives rise to Sertoli cells in the testis or follicle cells in the ovary. The remaining cell types within the gonad, each of which has a developmental choice, then become fated to follow the testicular pathway. This process must depend on cell-cell interactions as Sry is not required within these other cell types for their differentiation. Subsequent male development of the animal as a whole is dependent on the production of testosterone and other factors by the testis. Sry encodes a DNA binding protein of the HMG box class, and presumably acts to regulate the expression of other genes which then confer cellular phenotype. However, rather than operating like other classes of transcription factor, it has been shown to induce a dramatic bend in its DNA binding sites, and may not directly affect transcription of target genes. Instead, it may perm it other factors to interact, which in turn either activate or repress transcription. Sequence comparisons between Sry genes from various species suggest that the HMG box is the only functional part of the protein. This part is responsible for DNA binding, and both mouse and hum an SRY bind the same consensus sequence at high affinity in vitro . However, the hum an gene fails to cause female to male sex reversal in transgenic mice. Possible reasons for this are discussed. There is also much evidence, including transgenic data, to suggest that the level of expression of Sry is critical to its function. On top of this, the gene can only successfully induce testis differentiation if the correct cell-cell interactions occur within the developing gonad. Despite knowing the identity of the testis determining gene, we are therefore still a long way from understanding how it achieves its function.


2014 ◽  
Vol 18 (2) ◽  
pp. 484-491 ◽  
Author(s):  
Tao Peng ◽  
Huiming Peng ◽  
Dong Soon Choi ◽  
Jing Su ◽  
Chung-Che Chang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document