Enhancement of telomere-plasmid segregation by the X-telomere associated sequence in Saccharomyces cerevisiae involves SIR2, SIR3, SIR4 and ABF1.

Genetics ◽  
1994 ◽  
Vol 136 (3) ◽  
pp. 757-767 ◽  
Author(s):  
S Enomoto ◽  
M S Longtine ◽  
J Berman

Abstract We have previously shown that circular replicating plasmids that carry yeast telomere repeat sequence (TG1-3) tracts segregate efficiently relative to analogous plasmids lacking the TG1-3 tract and this efficient segregation is dependent upon RAP1. While a long TG1-3 tract is sufficient to improve plasmid segregation, the segregation efficiency of telomere plasmids (TEL-plasmids) is enhanced when the X-Telomere Associated Sequence (X-TAS) is also included on the plasmids. We now demonstrate that the enhancement of TEL-plasmid segregation by the X-TAS depends on SIR2, SIR3, SIR4 and ABF1 in trans and requires the Abf1p-binding site within the X-TAS. Mutation of the Abf1p-binding site within the X-TAS results in TEL-plasmids that are no longer affected by mutations in SIR2, SIR3 or SIR4, despite the fact that other Abf1p-binding sites are present on the plasmid. Mutation of the ARS consensus sequence within the X-TAS converts the X-TAS from an enhancer element to a negative element that interferes with TEL-plasmid segregation in a SIR-dependent manner. Thus, telomere associated sequences interact with TG1-3 tracts on the plasmid, suggesting that the TASs have an active role in modulating telomere function.

1998 ◽  
Vol 66 (9) ◽  
pp. 4123-4129 ◽  
Author(s):  
Philip J. Hill ◽  
Alan Cockayne ◽  
Patrick Landers ◽  
Julie A. Morrissey ◽  
Catriona M. Sims ◽  
...  

ABSTRACT In Staphylococcus epidermidis and Staphylococcus aureus, a number of cell wall- and cytoplasmic membrane-associated lipoproteins are induced in response to iron starvation. To gain insights into the molecular basis of iron-dependent gene regulation in the staphylococci, we sequenced the DNA upstream of the 3-kb S. epidermidis sitABC operon, which Northern blot analysis indicates is transcriptionally regulated by the growth medium iron content. We identified two DNA sequences which are homologous to elements of the Corynebacterium diphtheriae DtxR regulon, which controls, in response to iron stress, for example, production of diphtheria toxin, siderophore, and a heme oxygenase. Upstream of thesitABC operon and divergently transcribed lies a 645-bp open reading frame (ORF), which codes for a polypeptide of approximately 25 kDa with homology to the DtxR family of metal-dependent repressor proteins. This ORF has been designated SirR (staphylococcal iron regulator repressor). Within thesitABC promoter/operator region, we also located a region of dyad symmetry overlapping the transcriptional start ofsitABC which shows high homology to the DtxR operator consensus sequence, suggesting that this region, termed the Sir box, is the SirR-binding site. The SirR protein was overexpressed, purified, and used in DNA mobility shift assays; SirR retarded the migration of a synthetic oligonucleotide based on the Sir box in a metal (Fe2+ or Mn2+)-dependent manner, providing confirmatory evidence that this motif is the SirR-binding site. Furthermore, Southern blot analysis of staphylococcal chromosomal DNA with the synthetic Sir box as a probe confirmed that there are at least five Sir boxes in the S. epidermidis genome and at least three in the genome of S. aureus, suggesting that SirR controls the expression of multiple target genes. Using a monospecific polyclonal antibody raised against SirR to probe Western blots of whole-cell lysates of S. aureus, S. carnosus,S. epidermidis, S. hominis, S. cohnii, S. lugdunensis, and S. haemolyticus, we identified an approximately 25-kDa cross-reactive protein in each of the staphylococcal species examined. Taken together, these data suggest that SirR functions as a divalent metal cation-dependent transcriptional repressor which is widespread among the staphylococci.


1992 ◽  
Vol 12 (5) ◽  
pp. 1997-2009
Author(s):  
M S Longtine ◽  
S Enomoto ◽  
S L Finstad ◽  
J Berman

Telomere repeat sequences (TRSs) can dramatically improve the segregation of unstable circular autonomously replicating sequence (ARS) plasmids in Saccharomyces cerevisiae. Deletion analysis demonstrated that yeast TRSs, which conform to the general sequence (C(1-3)A)n, are able to stabilize circular ARS plasmids. A number of TRS clones of different primary sequence and C(1-3)A tract length confer the plasmid stabilization phenotype. TRS sequences do not appear to improve plasmid replication efficiency, as determined by plasmid copy number analysis and functional assays for ARS activity. Pedigree analysis confirms that TRS-containing plasmids are missegregated at low frequency and that missegregated TRS-containing plasmids, like ARS plasmids, are preferentially retained by the mother cell. Plasmids stabilized by TRSs have properties that distinguish them from centromere-containing plasmids and 2 microns-based recombinant plasmids. Linear ARS plasmids, which include two TRS tracts at their termini, segregate inefficiently, while circular plasmids with one or two TRS tracts segregate efficiently, suggesting that plasmid topology or TRS accessibility interferes with TRS segregation function on linear plasmids. In strains carrying the temperature-sensitive mutant alleles rap1grc4 and rap1-5, TRS plasmids are not stable at the semipermissive temperature, suggesting that RAP1 protein is involved in TRS plasmid stability. In Schizosaccharomyces pombe, an ARS plasmid was stabilized by the addition of S. pombe telomere sequence, suggesting that the ability to improve the segregation of ARS plasmids is a general property of telomere repeats.


Genome ◽  
1999 ◽  
Vol 42 (3) ◽  
pp. 442-446 ◽  
Author(s):  
M A Garrido-Ramos ◽  
R de la Herrán ◽  
M Ruiz Rejón ◽  
C Ruiz Rejón

In an ongoing effort to trace the evolution of the sex chromosomes of Silene latifolia, we have searched for the existence of repetitive sequences specific to these chromosomes in the genome of this species by direct isolation from low-melting agarose gels of satellite DNA bands generated by digestion with restriction enzymes. Five monomeric units belonging to a highly repetitive family isolated from Silene latifolia, the SacI family, have been cloned and characterized. The consensus sequence of the repetitive units is 313 bp in length (however, high variability exists for monomer length variants) and 52.9% in AT. Repeating units are tandemly arranged at the subtelomeric regions of the chromosomes in this species. The sequence does not possess direct or inverted sequences of significant length, but short direct repeats are scattered throughout the monomer sequence. Several short sequence motives resemble degenerate monomers of the telomere repeat sequence of plants (TTTAGGG), confirming a tight association between this subtelomeric satellite DNA and the telomere repeats. Our approach in this work confirms that SacI satellite DNA sequences are among the most abundant in the genome of S. latifolia and, on the other hand, that satellite DNA sequences specific of sex chromosomes are absent in this species. This agrees with a sex determination system less cytogenetically diverged from a bisexual state than the system present in other plant species, such as R. acetosa, or at least a lesser degree of differentiation between the sex chromosomes of S. latifolia and the autosomes.Key words: satellite DNA, sex chromosomes, Silene latifolia, subtelomeric sequences.


1992 ◽  
Vol 12 (5) ◽  
pp. 1997-2009 ◽  
Author(s):  
M S Longtine ◽  
S Enomoto ◽  
S L Finstad ◽  
J Berman

Telomere repeat sequences (TRSs) can dramatically improve the segregation of unstable circular autonomously replicating sequence (ARS) plasmids in Saccharomyces cerevisiae. Deletion analysis demonstrated that yeast TRSs, which conform to the general sequence (C(1-3)A)n, are able to stabilize circular ARS plasmids. A number of TRS clones of different primary sequence and C(1-3)A tract length confer the plasmid stabilization phenotype. TRS sequences do not appear to improve plasmid replication efficiency, as determined by plasmid copy number analysis and functional assays for ARS activity. Pedigree analysis confirms that TRS-containing plasmids are missegregated at low frequency and that missegregated TRS-containing plasmids, like ARS plasmids, are preferentially retained by the mother cell. Plasmids stabilized by TRSs have properties that distinguish them from centromere-containing plasmids and 2 microns-based recombinant plasmids. Linear ARS plasmids, which include two TRS tracts at their termini, segregate inefficiently, while circular plasmids with one or two TRS tracts segregate efficiently, suggesting that plasmid topology or TRS accessibility interferes with TRS segregation function on linear plasmids. In strains carrying the temperature-sensitive mutant alleles rap1grc4 and rap1-5, TRS plasmids are not stable at the semipermissive temperature, suggesting that RAP1 protein is involved in TRS plasmid stability. In Schizosaccharomyces pombe, an ARS plasmid was stabilized by the addition of S. pombe telomere sequence, suggesting that the ability to improve the segregation of ARS plasmids is a general property of telomere repeats.


1993 ◽  
Vol 13 (9) ◽  
pp. 5805-5813 ◽  
Author(s):  
M M Wang ◽  
R Y Tsai ◽  
K A Schrader ◽  
R R Reed

Genes which mediate odorant signal transduction are expressed at high levels in neurons of the olfactory epithelium. The molecular mechanism governing the restricted expression of these genes likely involves tissue-specific DNA binding proteins which coordinately activate transcription through sequence-specific interactions with olfactory promoter regions. We have identified binding sites for the olfactory neuron-specific transcription factor, Olf-1, in the sequences surrounding the transcriptional initiation site of five olfactory neuron-specific genes. The Olf-1 binding sites described define the consensus sequence YTCCCYRGGGAR. In addition, we have identified a second binding site, the U site, in the olfactory cyclic nucleotide gated channel and type III cyclase promoters, which binds factors present in all tissue examined. These experiments support a model in which expression of Olf-1 in the sensory neurons coordinately activates a set of olfactory neuron-specific genes. Furthermore, expression of a subset of these genes may be modulated by additional binding factors.


Blood ◽  
1998 ◽  
Vol 91 (4) ◽  
pp. 1185-1195 ◽  
Author(s):  
Taiho Kambe ◽  
Junko Tada ◽  
Mariko Chikuma ◽  
Seiji Masuda ◽  
Masaya Nagao ◽  
...  

Abstract Embryonic stem cells and embryonal carcinoma P19 cells produce erythropoietin (Epo) in an oxygen-independent manner, although lactate dehydrogenase A (LDHA) is hypoxia-inducible. To explore this paradox, we studied the operation of cis-acting sequences from these genes in P19 and Hep3B cells. The Epo gene promoter and 3′ enhancer from P19 cells conveyed hypoxia-inducible responses in Hep3B cells but not in P19 cells. Together with DNA sequencing and the normal transcription start site of P19 Epo gene, this excluded the possibility that the noninducibility of Epo gene in P19 cells was due to mutation in these sequences or unusual initiation of transcription. In contrast, reporter constructs containing LDHA enhancer and promoter were hypoxia inducible in P19 and Hep3B cells, and mutation of a hypoxia- inducible factor 1 (HIF-1) binding site abolished the hypoxic inducibility in both cells, indicating that HIF-1 activation operates normally in P19 cells. Neither forced expression of hepatocyte nuclear factor 4 in P19 cells nor deletion of its binding site from the Epo enhancer was effective in restoring Epo enhancer function. P19 cells may lack an unidentified regulator(s) required for interaction of the Epo enhancer with Epo and LDHA promoters.


2002 ◽  
Vol 28 (3) ◽  
pp. 193-205 ◽  
Author(s):  
J Quirk ◽  
P Brown

The homeobox repressor Hesx1, expressed throughout Rathke's pouch and required for normal pituitary development, has been implicated in anterior pituitary pathogenesis in man. Prolonged expression of Hesx1 delays the appearance of anterior pituitary terminal differentiation markers in mice, particularly the gonadotroph hormones. We tested if Hesx1 could modulate gonadotrophin gene expression directly, and found that Hesx1 repressed both common alpha subunit (alpha GSU) and luteinising hormone beta-subunit (LH beta) gene promoters. Repression mapped to the Pitx1 homeodomain protein transactivation site in the proximal alpha GSU promoter, but did not map to the equivalent site on LH beta. Hesx1 repression of the alpha GSU Pitx1 site was overridden by co-transfection of Pitx1. In contrast, Hesx1 antagonised Pitx1 transactivation of LH beta in a dose-dependent manner. This was due to monomeric binding of Hesx1 on alpha GSU and homodimerisation on LH beta. The homodimerisation site comprises the Pitx1 DNA binding site and a proximal binding site, and mutation of either inhibited homodimer formation. Conversion of the LH beta Pitx1 DNA binding site to an alpha GSU-type did not promote homodimer formation, arguing that Hesx1 has pronounced site selectivity. Furthermore, mutation of the proximal half of the homodimerisation site blocked Hesx1 antagonisation of Pitx1 transactivation. We conclude that Hesx1 monomers repress gene expression, and homodimers block specific transactivation sites.


2001 ◽  
Vol 21 (23) ◽  
pp. 8117-8128 ◽  
Author(s):  
Simona Grossi ◽  
Alessandro Bianchi ◽  
Pascal Damay ◽  
David Shore

ABSTRACT Rap1p, the major telomere repeat binding protein in yeast, has been implicated in both de novo telomere formation and telomere length regulation. To characterize the role of Rap1p in these processes in more detail, we studied the generation of telomeres in vivo from linear DNA substrates containing defined arrays of Rap1p binding sites. Consistent with previous work, our results indicate that synthetic Rap1p binding sites within the internal half of a telomeric array are recognized as an integral part of the telomere complex in an orientation-independent manner that is largely insensitive to the precise spacing between adjacent sites. By extending the lengths of these constructs, we found that several different Rap1p site arrays could never be found at the very distal end of a telomere, even when correctly oriented. Instead, these synthetic arrays were always followed by a short (≈100-bp) “cap” of genuine TG repeat sequence, indicating a remarkably strict sequence requirement for an end-specific function(s) of the telomere. Despite this fact, even misoriented Rap1p site arrays promote telomere formation when they are placed at the distal end of a telomere-healing substrate, provided that at least a single correctly oriented site is present within the array. Surprisingly, these heterogeneous arrays of Rap1p binding sites generate telomeres through a RAD52-dependent fusion resolution reaction that results in an inversion of the original array. Our results provide new insights into the nature of telomere end capping and reveal one way by which recombination can resolve a defect in this process.


1994 ◽  
Vol 14 (9) ◽  
pp. 5986-5996
Author(s):  
S P Hunger ◽  
R Brown ◽  
M L Cleary

The t(17;19) translocation in acute lymphoblastic leukemias results in creation of E2A-hepatic leukemia factor (HLF) chimeric proteins that contain the DNA-binding and protein dimerization domains of the basic leucine zipper (bZIP) protein HLF fused to a portion of E2A proteins with transcriptional activation properties. An in vitro binding site selection procedure was used to determine DNA sequences preferentially bound by wild-type HLF and chimeric E2A-HLF proteins isolated from various t(17;19)-bearing leukemias. All were found to selectively bind the consensus sequence 5'-GTTACGTAAT-3' with high affinity. Wild-type and chimeric HLF proteins also bound closely related sites identified previously for bZIP proteins of both the proline- and acidic amino acid-rich (PAR) and C/EBP subfamilies; however, E2A-HLF proteins were significantly less tolerant of certain deviations from the HLF consensus binding site. These differences were directly attributable to loss of an HLF ancillary DNA-binding domain in all E2A-HLF chimeras and were further exacerbated by a zipper mutation in one isolate. Both wild-type and chimeric HLF proteins displayed transcriptional activator properties in lymphoid and nonlymphoid cells on reporter genes containing HLF or C/EBP consensus binding sites. But on reporter genes with nonoptimal binding sites, their transcriptional properties diverged and E2A-HLF competitively inhibited activation by wild-type PAR proteins. These findings establish a spectrum of binding site-specific transcriptional properties for E2A-HLF which may preferentially activate expression of select subordinate genes as a homodimer and potentially antagonize expression of others through heteromeric interactions.


1993 ◽  
Vol 13 (1) ◽  
pp. 668-676
Author(s):  
V Lemarchandel ◽  
J Ghysdael ◽  
V Mignotte ◽  
C Rahuel ◽  
P H Roméo

The human glycoprotein IIB (GPIIB) gene is expressed only in megakaryocytes, and its promoter displays cell type specificity. We show that this specificity involved two cis-acting sequences. The first one, located at -55, contains a GATA binding site. Point mutations that abolish protein binding on this site decrease the activity of the GPIIB promoter but do not affect its tissue specificity. The second one, located at -40, contains an Ets consensus sequence, and we show that Ets-1 or Ets-2 protein can interact with this -40 GPIIB sequence. Point mutations that impair Ets binding decrease the activity of the GPIIB promoter to the same extent as do mutations that abolish GATA binding. A GPIIB 40-bp DNA fragment containing the GATA and Ets binding sites can confer activity to a heterologous promoter in megakaryocytic cells. This activity is independent of the GPIIB DNA fragment orientation, and mutations on each binding site result in decreased activity. Using cotransfection assays, we show that c-Ets-1 and human GATA1 can transactive the GPIIB promoter in HeLa cells and can act additively. Northern (RNA) blot analysis indicates that the ets-1 mRNA level is increased during megakaryocyte-induced differentiation of erythrocytic/megakaryocytic cell lines. Gel retardation assays show that the same GATA-Ets association is found in the human GPIIB enhancer and the rat platelet factor 4 promoter, the other two characterized regulatory regions of megakaryocyte-specific genes. These results indicate that GATA and Ets cis-acting sequences are an important determinant of megakaryocytic specific gene expression.


Sign in / Sign up

Export Citation Format

Share Document