A Mutational Analysis of dishevelled in Drosophila Defines Novel Domains in the Dishevelled Protein as Well as Novel Suppressing Alleles of axin

Genetics ◽  
2002 ◽  
Vol 161 (2) ◽  
pp. 747-762
Author(s):  
Andrea Penton ◽  
Andreas Wodarz ◽  
Roel Nusse

Abstract Drosophila dishevelled (dsh) functions in two pathways: it is necessary to transduce Wingless (Wg) signaling and it is required in planar cell polarity. To learn more about how Dsh can discriminate between these functions, we performed genetic screens to isolate additional dsh alleles and we examined the potential role of protein phosphorylation by site-directed mutagenesis. We identified two alleles with point mutations in the Dsh DEP domain that specifically disrupt planar polarity signaling. When positioned in the structure of the DEP domain, these mutations are located close to each other and to a previously identified planar polarity mutation. In addition to the requirement for the DEP domain, we found that a cluster of potential phosphorylation sites in a binding domain for the protein kinase PAR-1 is also essential for planar polarity signaling. To identify regions of dsh that are necessary for Wg signaling, we screened for mutations that modified a GMR-GAL4;UAS-dsh overexpression phenotype in the eye. We recovered many alleles of the transgene containing missense mutations, including mutations in the DIX domain and in the DEP domain, the latter group mapping separately from the planar polarity mutations. In addition, several transgenes had mutations within a domain containing a consensus sequence for an SH3-binding protein. We also recovered second-site-suppressing mutations in axin, mapping at a region that may specifically interact with overexpressed Dsh.

2000 ◽  
Vol 93 (4) ◽  
pp. 1022-1033 ◽  
Author(s):  
Carla Nau ◽  
Sho-Ya Wang ◽  
Gary R. Strichartz ◽  
Ging Kuo Wang

Background S(-)-bupivacaine reportedly exhibits lower cardiotoxicity but similar local anesthetic potency compared with R(+)-bupivacaine. The bupivacaine binding site in human heart (hH1) Na+ channels has not been studied to date. The authors investigated the interaction of bupivacaine enantiomers with hH1 Na+ channels, assessed the contribution of putatively relevant residues to binding, and compared the intrinsic affinities to another isoform, the rat skeletal muscle (mu1) Na+ channel. Methods Human heart and mu1 Na+ channel alpha subunits were transiently expressed in HEK293t cells and investigated during whole cell voltage-clamp conditions. Using site-directed mutagenesis, the authors created point mutations at positions hH1-F1760, hH1-N1765, hH1-Y1767, and hH1-N406 by introducing the positively charged lysine (K) or the negatively charged aspartic acid (D) and studied their influence on state-dependent block by bupivacaine enantiomers. Results Inactivated hH1 Na+ channels displayed a weak stereoselectivity with a stereopotency ratio (+/-) of 1.5. In mutations hH1-F1760K and hH1-N1765K, bupivacaine affinity of inactivated channels was reduced by approximately 20- to 40-fold, in mutation hH1-N406K by approximately sevenfold, and in mutations hH1-Y1767K and hH1-Y1767D by approximately twofold to threefold. Changes in recovery of inactivated mutant channels from block paralleled those of inactivated channel affinity. Inactivated hH1 Na+ channels exhibited a slightly higher intrinsic affinity than mu1 Na+ channels. Conclusions Differences in bupivacaine stereoselectivity and intrinsic affinity between hH1 and mu1 Na+ channels are small and most likely of minor clinical relevance. Amino acid residues in positions hH1-F1760, hH1-N1765, and hH1-N406 may contribute to binding of bupivacaine enantiomers in hH1 Na+ channels, whereas the role of hH1-Y1767 remains unclear.


1989 ◽  
Vol 9 (12) ◽  
pp. 5464-5472
Author(s):  
S G Holmes ◽  
M M Smith

Yeast autonomously replicating sequence (ARS) elements are composed of a conserved 11-base-pair (bp) core consensus sequence and a less well defined 3'-flanking region. We have investigated the relationship between the H4 ARS core consensus sequence and its 3'-flanking domain. The minimal sequences necessary and sufficient for function were determined by combining external 3' and 5' deletions to produce a nested set of ARS fragments. Sequences 5' of the core consensus were dispensable for function, but at least 66 bp of 3'-flanking domain DNA was required for full ARS function. The importance of the relative orientation of the core consensus element with respect to the 3'-flanking domain was tested by precisely inverting 14 bp of DNA including the core consensus sequence by oligonucleotide mutagenesis. This core inversion mutant was defective for all ARS function, showing that a fixed relative orientation of the core consensus and 3'-flanking domain is required for function. The 3'-flanking domain of the minimal functional H4 ARS fragment contains three sequences with a 9-of-11-bp match to the core consensus. The role of these near-match sequences was tested by directed mutagenesis. When all near-match sequences with an 8-of-11-bp match or better were simultaneously disrupted by point mutations, the resulting ARS construct retained full replication function. Therefore, multiple copies of a sequence closely related to the core consensus element are not required for H4 ARS function.


1990 ◽  
Vol 10 (8) ◽  
pp. 3917-3925 ◽  
Author(s):  
J V Van Houten ◽  
C S Newlon

Yeast autonomously replicating sequence (ARS) elements contain an 11-base-pair core consensus sequence (5'-[A/T]TTTAT[A/G]TTT[A/T]-3') that is required for function. The contribution of each position within this sequence to ARS activity was tested by creating all possible single-base mutations within the core consensus sequence of ARS307 (formerly called the C2G1 ARS) and testing their effects on high-frequency transformation and on plasmid stability. Of the 33 mutations, 22 abolished ARS function as measured by high-frequency transformation, 7 caused more than twofold reductions in plasmid stability, and 4 had no effect on plasmid stability. Mutations that reduced or abolished ARS activity occurred at each position in the consensus sequence, demonstrating that each position of this sequence contributes to ARS function. Of the four mutations that had no effect on ARS activity, three created alternative perfect matches to the core consensus sequence, demonstrating that the alternate bases allowed by the consensus sequence are, indeed, interchangeable. In addition, a change from T to C at position 6 did not perturb wild-type efficiency. To test whether the essential region extends beyond the 11-base-pair consensus sequence, the effects on plasmid stability of point mutations one base 3' to the T-rich strand of the core consensus sequence (position 12) and deletion mutations that altered bases 5' to the T-rich strand of the core consensus sequence were examined. An A at position 12 or the removal of three T residues 5' to the core consensus sequence severely diminished ARS efficiency, showing that the region required for full ARS efficiency extends beyond the core consensus sequence in both directions.


Genetics ◽  
1994 ◽  
Vol 136 (4) ◽  
pp. 1355-1365 ◽  
Author(s):  
C Smith ◽  
H Giordano ◽  
R DeLotto

Abstract Two genes involved in the generation of dorsoventral asymmetry in the developing Drosophila melanogaster embryo, snake and easter, encode the zymogen form of serine proteases. Mutant alleles of snake were cloned and sequenced revealing two types of lesions: point mutations which alter the amino acid sequence (snk073 and snkrm4) and point mutations which alter the splicing (snk229 or snk233) of intron 1 of the mRNA from the normal 3' end of the intron to a cryptic site. snake mutant embryos derived from homozygous mothers can be fully rescued by injection of RNA transcripts of the wild-type snake cDNA. RNA phenotypic rescue and site-directed mutagenesis experiments indicate that snake requires the serine, histidine and aspartic acid of the catalytic triad for normal activity. Deletion experiments show that an acidic proenzyme domain is required for snake rescue activity to be uniformly distributed throughout the embryo. A second proenzyme domain, called the disulfide knot, appears to be essential for normal regulation of activity of the snake catalytic chain. Transcripts encoding only the proenzyme polypeptides of either snake or easter can dorsalize wild type embryos. We propose a model in which the proenzyme determinants of both the snake and easter enzymes mediate interaction between the serine proteases and other components of the dorsal-ventral patterning system.


Author(s):  
George K. Annor ◽  
Nour Elshabassy ◽  
Devon Lundine ◽  
Don-Gerard Conde ◽  
Gu Xiao ◽  
...  

The TP53 gene is often mutated in cancer, with missense mutations found in the central DNA binding domain, and less often in the C-terminal oligomerization domain (OD). These types of mutations are found in patients with the rare inherited cancer predisposition disorder called Li-Fraumeni syndrome. We previously found that mutant p53 (mtp53) R273H associates with replicating DNA and promotes the chromatin association of replication-associated proteins mini-chromosome maintenance 2 (MCM2), and poly ADP-ribose polymerase 1(PARP1). Herein, we created dual mutants in order to test if the oligomerization state of mtp53 R273H played a role in chromatin binding oncogenic gain-of-function (GOF) activities. We used site-directed mutagenesis to introduce point mutations in the OD in wild-type p53 (wtp53), and mtp53 R273H expressing plasmids. The glutaraldehyde crosslinking assay revealed that both wtp53 and mtp53 R273H formed predominantly tetramers, while the single OD mutant A347D, and the dual mtp53 R273H-A347D, formed predominantly dimers. The R337C, L344P, mtp53 R273H-R337C, and mtp53 R273H-L344P proteins formed predominantly monomers. Wtp53 was able to activate the cyclin-dependent kinase gene p21/waf and the p53 feedback regulator MDM2. As expected, the transactivation activity was lost for all the single mutants, as well as the mtp53 R273H-dual mutants. Importantly, mtp53 R273H and the dual oligomerization mutants, R273H-A347D, R273H-R337C, and R273H-L344P were able to interact with chromatin. Additionally, the dual oligomerization mutants, R273H-A347D, R273H-R337C, and R273H-L344P, maintained strong interactions with MCM2 and PARP1. Our findings suggest that while mtp53 R273H can form tetramers, tetramer formation is not required for the GOF associated chromatin interactions.


1987 ◽  
Vol 7 (9) ◽  
pp. 3092-3097
Author(s):  
D J Clanton ◽  
Y Y Lu ◽  
D G Blair ◽  
T Y Shih

Point mutations of p21 proteins were constructed by oligonucleotide-directed mutagenesis of the v-rasH oncogene, which substituted amino acid residues within the nucleotide-binding consensus sequence, GXG GXGK. When the glycine residue at position 10, 13, or 15 was substituted with valine, the viral rasH product p21 lost its GTP-binding and autokinase activities. Other substitutions at position 33, 51, or 59 did not impair its binding activity. G418-resistant NIH 3T3 cell lines were derived by transfection with constructs obtained by inserting the mutant proviral DNA into the pSV2neo plasmid. Clones with a valine mutation at position 13 or 15 were incapable of transforming cells, while all other mutants with GTP-binding activity were competent. A mutant with a substitution of valine for glycine at position 10 which had lost its ability to bind GTP and its autokinase activity was fully capable of transforming NIH 3T3 cells. These cells grew in soft agar and rapidly formed tumors in nude mice. The p21 of cell lines derived from tumor explants still lacked the autokinase activity. These findings suggest that the glycine-rich consensus sequence is important in controlling p21 activities and that certain mutations may confer to p21 its active conformation without participation of ligand binding.


2005 ◽  
Vol 71 (4) ◽  
pp. 1909-1914 ◽  
Author(s):  
Chan K. Chan Kwo Chion ◽  
Sarah E. Askew ◽  
David J. Leak

ABSTRACT Propene monooxygenase has been cloned from Mycobacterium sp. strain M156, based on hybridization with the amoABCD genes of Rhodococcus corallinus B276. Sequencing indicated that the mycobacterial enzyme is a member of the binuclear nonheme iron monooxygenase family and, in gene order and sequence, is most similar to that from R. corallinus B-276. Attempts were made to express the pmoABCD operon in Escherichia coli and Mycobacterium smegmatis mc2155. In the former, there appeared to be a problem resolving overlapping reading frames between pmoA and -B and between pmoC and -D, while in the latter, problems were encountered with plasmid instability when the pmoABCD genes were placed under the control of the hsp60 heat shock promoter in the pNBV1 vector. Fortuitously, constructs with the opposite orientation were constitutively expressed at a level sufficient to allow preliminary mutational analysis. Two PMO active-site residues (A94 and V188) were targeted by site-directed mutagenesis to alter their stereoselectivity. The results suggest that changing the volume occupied by the side chain at V188 leads to a systematic alteration in the stereoselectivity of styrene oxidation, presumably by producing different orientations for substrate binding during catalysis. Changing the volume occupied by the side chain at A94 produced a nonsystematic change in stereoselectivity, which may be attributable to the role of this residue in expansion of the binding site during substrate binding. Neither set of mutations changed the enzyme's specificity for epoxidation.


1992 ◽  
Vol 283 (1) ◽  
pp. 123-128 ◽  
Author(s):  
C Bourguignon-Bellefroid ◽  
B Joris ◽  
J Van Beeumen ◽  
J M Ghuysen ◽  
J M Frère

Incubation of the exocellular DD-carboxypeptidase/transpeptidase of Streptomyces R61 with phenylglyoxal resulted in a time-dependent decrease in the enzyme activity. This inactivation was demonstrated to be due to modification of the Arg-99 side chain. In consequence, the role of that residue was investigated by site-directed mutagenesis. Mutation of Arg-99 into leucine appeared to be highly detrimental to enzyme stability, reflecting a determining structural role for this residue. The conserved Arg-103 residue was also substituted by using site-directed mutagenesis. The modification to a serine residue yielded a stable enzyme, the catalytic properties of which were similar to those of the wild-type enzyme. Thus Arg-103, although strictly conserved or replaced by a lysine residue in most of the active-site penicillin-recognizing proteins, did not appear to fulfil any essential role in either the enzyme activity or structure.


1998 ◽  
Vol 331 (1) ◽  
pp. 257-264 ◽  
Author(s):  
Ana M. PAJOR ◽  
Ning SUN ◽  
Heidi G. VALMONTE

Succinate transport by the rabbit Na+/dicarboxylate co-transporter, NaDC-1, expressed in Xenopusoocytes was inhibited by the histidyl-selective reagent diethyl pyrocarbonate (DEPC). Therefore the role of histidine residues in the function of NaDC-1 was examined by site-directed mutagenesis. All 11 histidine residues in NaDC-1 were converted to alanine, but only mutant H106A exhibited a decrease in succinate transport. Additional mutations of NaDC-1 at position 106 showed that aspartic acid and asparagine, but not arginine, can substitute for histidine. Examination of succinate and citrate kinetics of H106A revealed a decrease in Vmax with no change in Km. Cell surface biotinylation experiments showed that the transport activity of all four mutants at position 106 was correlated with the amount of cell surface expression, suggesting a role of His-106 in membrane expression rather than function. Two of the histidine mutants, H153A and H569A, exhibited insensitivity to inhibition by DEPC, indicating that these residues are involved in binding DEPC. Neither of these residues is required for transport activity; thus DEPC probably inhibits NaDC-1 function by hindrance of the mobility of the carrier. We conclude that histidine residues are not critical for transport function in NaDC-1, although His-106 might be involved in determining protein expression or stability in the membrane.


Genetics ◽  
1999 ◽  
Vol 153 (4) ◽  
pp. 1655-1671
Author(s):  
Shai Shaham ◽  
Peter W Reddien ◽  
Brian Davies ◽  
H Robert Horvitz

Abstract Mutations in the gene ced-3, which encodes a protease similar to interleukin-1β converting enzyme and related proteins termed caspases, prevent programmed cell death in the nematode Caenorhabditis elegans. We used site-directed mutagenesis to demonstrate that both the presumptive active-site cysteine of the CED-3 protease and the aspartate residues at sites of processing of the CED-3 proprotein are required for programmed cell death in vivo. We characterized the phenotypes caused by and the molecular lesions of 52 ced-3 alleles. These alleles can be ordered in a graded phenotypic series. Of the 30 amino acid sites altered by ced-3 missense mutations, 29 are conserved with at least one other caspase, suggesting that these residues define sites important for the functions of all caspases. Animals homozygous for the ced-3(n2452) allele, which is deleted for the region of the ced-3 gene that encodes the protease domain, seemed to be incompletely blocked in programmed cell death, suggesting that some programmed cell death can occur independently of CED-3 protease activity.


Sign in / Sign up

Export Citation Format

Share Document