Experimental Prediction of the Evolution of Cefepime Resistance From the CMY-2 AmpC β-Lactamase

Genetics ◽  
2003 ◽  
Vol 164 (1) ◽  
pp. 23-29
Author(s):  
Miriam Barlow ◽  
Barry G Hall

Abstract Understanding of the evolutionary histories of many genes has not yet allowed us to predict the evolutionary potential of those genes. Intuition suggests that current biochemical activity of gene products should be a good predictor of the potential to evolve related activities; however, we have little evidence to support that intuition. Here we use our in vitro evolution method to evaluate biochemical activity as a predictor of future evolutionary potential. Neither the class C Citrobacter freundii CMY-2 AmpC β-lactamase nor the class A TEM-1 β-lactamase confer resistance to the β-lactam antibiotic cefepime, nor do any of the naturally occurring alleles descended from them. However, the CMY-2 AmpC enzyme and some alleles descended from TEM-1 confer high-level resistance to the structurally similar ceftazidime. On the basis of the comparison of TEM-1 and CMY-2, we asked whether biochemical activity is a good predictor of the evolutionary potential of an enzyme. If it is, then CMY-2 should be more able than the TEMs to evolve the ability to confer higher levels of cefepime resistance. Although we generated CMY-2 evolvants that conferred increased cefepime resistance, we did not recover any CMY-2 evolvants that conferred resistance levels as high as the best cefepime-resistant TEM alleles.

2020 ◽  
Vol 65 (1) ◽  
pp. e01948-20
Author(s):  
Dalin Rifat ◽  
Si-Yang Li ◽  
Thomas Ioerger ◽  
Keshav Shah ◽  
Jean-Philippe Lanoix ◽  
...  

ABSTRACTThe nitroimidazole prodrugs delamanid and pretomanid comprise one of only two new antimicrobial classes approved to treat tuberculosis (TB) in 50 years. Prior in vitro studies suggest a relatively low barrier to nitroimidazole resistance in Mycobacterium tuberculosis, but clinical evidence is limited to date. We selected pretomanid-resistant M. tuberculosis mutants in two mouse models of TB using a range of pretomanid doses. The frequency of spontaneous resistance was approximately 10−5 CFU. Whole-genome sequencing of 161 resistant isolates from 47 mice revealed 99 unique mutations, of which 91% occurred in 1 of 5 genes previously associated with nitroimidazole activation and resistance, namely, fbiC (56%), fbiA (15%), ddn (12%), fgd (4%), and fbiB (4%). Nearly all mutations were unique to a single mouse and not previously identified. The remaining 9% of resistant mutants harbored mutations in Rv2983 (fbiD), a gene not previously associated with nitroimidazole resistance but recently shown to be a guanylyltransferase necessary for cofactor F420 synthesis. Most mutants exhibited high-level resistance to pretomanid and delamanid, although Rv2983 and fbiB mutants exhibited high-level pretomanid resistance but relatively small changes in delamanid susceptibility. Complementing an Rv2983 mutant with wild-type Rv2983 restored susceptibility to pretomanid and delamanid. By quantifying intracellular F420 and its precursor Fo in overexpressing and loss-of-function mutants, we provide further evidence that Rv2983 is necessary for F420 biosynthesis. Finally, Rv2983 mutants and other F420H2-deficient mutants displayed hypersusceptibility to some antibiotics and to concentrations of malachite green found in solid media used to isolate and propagate mycobacteria from clinical samples.


2010 ◽  
Vol 54 (6) ◽  
pp. 2291-2302 ◽  
Author(s):  
Malcolm G. P. Page ◽  
Clothilde Dantier ◽  
Eric Desarbre

ABSTRACT BAL30072 is a new monocyclic β-lactam antibiotic belonging to the sulfactams. Its spectrum of activity against significant Gram-negative pathogens with β-lactam-resistant phenotypes was evaluated and was compared with the activities of reference drugs, including aztreonam, ceftazidime, cefepime, meropenem, imipenem, and piperacillin-tazobactam. BAL30072 showed potent activity against multidrug-resistant (MDR) Pseudomonas aeruginosa and Acinetobacter sp. isolates, including many carbapenem-resistant strains. The MIC90s were 4 μg/ml for MDR Acinetobacter spp. and 8 μg/ml for MDR P. aeruginosa, whereas the MIC90 of meropenem for the same sets of isolates was >32 μg/ml. BAL30072 was bactericidal against both Acinetobacter spp. and P. aeruginosa, even against strains that produced metallo-β-lactamases that conferred resistance to all other β-lactams tested, including aztreonam. It was also active against many species of MDR isolates of the Enterobacteriaceae family, including isolates that had a class A carbapenemase or a metallo-β-lactamase. Unlike other monocyclic β-lactams, BAL30072 was found to trigger the spheroplasting and lysis of Escherichia coli rather than the formation of extensive filaments. The basis for this unusual property is its inhibition of the bifunctional penicillin-binding proteins PBP 1a and PBP 1b, in addition to its high affinity for PBP 3, which is the target of monobactams, such as aztreonam.


2019 ◽  
Vol 152 (Supplement_1) ◽  
pp. S32-S33
Author(s):  
Kaitlin Mitchell ◽  
Erin McElvania ◽  
Meghan Wallace ◽  
Amy Robertson ◽  
Lars Westblade ◽  
...  

Abstract Members of the genus Corynebacterium are increasingly recognized as causes of opportunistic infection; some species can be multidrug resistant, posing a treatment challenge. Daptomycin is frequently used as therapy of last resort in this setting, but previous work from our group demonstrated the ability of C striatum clinical isolates to rapidly develop high-level resistance to daptomycin, both in vivo and in vitro. Here, our objective was to expand this investigation into a multicenter study evaluating multiple Corynebacterium species. Corynebacterium strains from three tertiary-care academic medical centers (total, n = 76; site 1, n = 44; site 2, n = 15; site 3, n = 17) were evaluated, representing 16 species. Isolates were identified during routine clinical testing and reported to species level in accordance with each laboratory’s standard operating procedures. Identification of each species was confirmed using both VITEK MS and Bruker BioTyper MALDI-TOF MS. MICs to daptomycin (Etest), vancomycin (Etest), and telavancin (Liofilchem) at baseline were determined using gradient diffusion methods on Mueller-Hinton agar with blood (Hardy Diagnostics). Each isolate was then inoculated in duplicate to 5 mL Tryptic Soy Broth. A daptomycin Etest was submerged in one tube from each pair, and growth was observed after 24-hour incubation. If turbidity was observed in the tube with daptomycin, MICs for each of the 3 antimicrobials were reassessed. High-level daptomycin resistance emerged in 24 strains: C aurimucosum (1/1 isolate tested), C bovis (1/2), C jeikeium (2/11), C macginleyi (3/3), C resistens (1/1), C simulans (1/1), C striatum (14/14 isolates), and C ulcerans (1/1). The majority of these isolates had MIC values >256 µg/mL following exposure to daptomycin. Forty-eight other isolates remained susceptible to daptomycin: C afermentans (1/1), C amycolatum (19/20), C diphtheriae (1/1), C jeikeium (7/11), C kroppenstedtii (2/2), C propinquum (3/3), C pseudodiphtheriticum (6/6), C tuberculostearicum (0/6), and C urealyticum (0/3). Many of these isolates did not undergo MIC testing postdaptomycin exposure in broth due to complete lack of growth. Among those that did (n = 19), the median daptomycin MIC was 0.38 µg/mL (mean 0.42 µg/mL; range 0.023-1.0 µg/mL). One isolate of C bovis and two isolates of C jeikeium yielded variable susceptibility to daptomycin; a subset of resistant colonies grew adjacent to the gradient diffusion strip. Upon isolation and further MIC testing, these colonies maintained high-level resistance. In addition, one isolate of C amycolatum exhibited high-level daptomycin resistance (MIC >256 µg/mL) prior to in vitro exposure. All isolates in the cohort were susceptible to vancomycin and telavancin, both before and after daptomycin exposure. Our findings suggest that multiple Corynebacterium species can rapidly develop high-level daptomycin resistance after a short period of exposure to this antimicrobial. This finding has important clinical implications, especially in the treatment of invasive infections or infections of indwelling medical devices.


1999 ◽  
Vol 43 (3) ◽  
pp. 639-646 ◽  
Author(s):  
Joan Gavaldà ◽  
Carmen Torres ◽  
Carmen Tenorio ◽  
Pedro López ◽  
Myriam Zaragoza ◽  
...  

The purpose of this work was to evaluate the in vitro possibilities of ampicillin-ceftriaxone combinations for 10 Enterococcus faecalis strains with high-level resistance to aminoglycosides (HLRAg) and to assess the efficacy of ampicillin plus ceftriaxone, both administered with humanlike pharmacokinetics, for the treatment of experimental endocarditis due to HLRAg E. faecalis. A reduction of 1 to 4 dilutions in MICs of ampicillin was obtained when ampicillin was combined with a fixed subinhibitory ceftriaxone concentration of 4 μg/ml. This potentiating effect was also observed by the double disk method with all 10 strains. Time-kill studies performed with 1 and 2 μg of ampicillin alone per ml or in combination with 5, 10, 20, 40, and 60 μg of ceftriaxone per ml showed a ≥2 log10 reduction in CFU per milliliter with respect to ampicillin alone and to the initial inoculum for all 10E. faecalis strains studied. This effect was obtained for seven strains with the combination of 2 μg of ampicillin per ml plus 10 μg of ceftriaxone per ml and for six strains with 5 μg of ceftriaxone per ml. Animals with catheter-induced endocarditis were infected intravenously with 108 CFU of E. faecalis V48 or 105 CFU of E. faecalisV45 and were treated for 3 days with humanlike pharmacokinetics of 2 g of ampicillin every 4 h, alone or combined with 2 g of ceftriaxone every 12 h. The levels in serum and the pharmacokinetic parameters of the humanlike pharmacokinetics of ampicillin or ceftriaxone in rabbits were similar to those found in humans treated with 2 g of ampicillin or ceftriaxone intravenously. Results of the therapy for experimental endocarditis caused by E. faecalis V48 or V45 showed that the residual bacterial titers in aortic valve vegetations were significantly lower in the animals treated with the combinations of ampicillin plus ceftriaxone than in those treated with ampicillin alone (P < 0.001). The combination of ampicillin and ceftriaxone showed in vitro and in vivo synergism against HLRAgE. faecalis.


2019 ◽  
Vol 63 (8) ◽  
Author(s):  
Nabila Ismail ◽  
Nazir A. Ismail ◽  
Shaheed V. Omar ◽  
Remco P. H. Peters

ABSTRACT Bedaquiline resistance within Mycobacterium tuberculosis may arise through efflux-based (rv0678) or target-based (atpE) pathway mutations. M. tuberculosis mutant populations from each of five sequential steps in a passaging approach, using a pyrazinamide-resistant ATCC strain, were subjected to MIC determinations and whole-genome sequencing. Exposure to increasing bedaquiline concentrations resulted in increasing phenotypic resistance (up to >2 μg/ml) through MIC determination on solid medium (Middlebrook 7H10). rv0678 mutations were dynamic, while atpE mutations were fixed, once occurring. We present the following hypothesis for in vitro emergence of bedaquiline resistance: rv0678 mutations may be the first transient step in low-level resistance acquisition, followed by high-level resistance due to fixed atpE mutations.


2020 ◽  
Author(s):  
Wenjing Le ◽  
Xiaohong Su ◽  
Xiangdi Lou ◽  
Xuechun Li ◽  
Xiangdong Gong ◽  
...  

ABSTRACTPreviously, we reported potent activity of a novel spiropyrimidinetrione, zoliflodacin, against N. gonorrhoeae isolates from symptomatic men in Nanjing, China, collected in 2013. Here, we investigated trends of susceptibilities of zoliflodacin in 986 gonococcal isolates collected from men between 2014 and 2018. N. gonorrhoeae isolates were tested for susceptibility to zoliflodacin and seven other antibiotics. Mutations in gyrA, gyrB, parC and parE genes were determined by PCR and DNA sequencing. The MIC of zoliflodacin for N. gonorrhoeae ranged from ≤0.002 to 0.25 mg/L; the overall MIC50s and MIC90s were 0.06 mg/L and 0.125mg/L in 2018, increasing two-fold from 2014. However, the percent of isolates with lower zoliflodacin MICs declined in each year sequentially while the percent with higher MICs increased yearly (P≤0.00001). All isolates were susceptible to spectinomycin but resistant to ciprofloxacin (MIC ≥1 μg/ml); 21.2% (209/986) were resistant to azithromycin (≥1 μg/ml), 43.4% (428/986) were penicillinase-producing (PPNG), 26.9% (265/986) tetracycline-resistant (TRNG) and 19.4% (191/986) were multi-drug resistant (MDR) isolates. Among 143 isolates with higher zoliflodacin MICs (0.125-0.25 mg/L), all had quinolone resistance associated double or triple mutations in gyrA; 139/143 (97.2%) also had mutations in parC. There were no D429N/A and/or K450T mutations in GyrB identified in the 143 isolates with higher zoliflodacin MICs; a S467N mutation in GyrB was identified in one isolate. We report that zoliflodacin has excellent in vitro activity against clinical gonococcal isolates, including those with high-level resistance to ciprofloxacin, azithromycin and extended spectrum cephalosporins.


2021 ◽  
Author(s):  
Wei Yu ◽  
Yiheng Jiang ◽  
Hao Xu ◽  
Li Zhang ◽  
Xuehang Jin ◽  
...  

Abstract OBJECTIVESThe emergence of vancomycin resistant enterococci (VRE) is shortening the choices for clinical anti-infective therapy. The aim of this study was to investigate the mechanism of vancomycin resistance and evaluate the effect of fosfomycin (FM), rifampin (RIF), vancomycin (VAN), linezolid (LNZ), daptomycin (DAP) alone or in combination against VRE.METHODSEight VRE isolates were collected. A total of 18 antibiotics susceptibility tests were further done for VRE. Whole genome sequencing and bioinformatics analysis were performed. The effect of FM, RIF, VNA, LNZ, DAP alone or in combination was determined using anti-biofilm testing and the time-kill assay.RESULTSAll isolates were susceptible to LNZ and DPA. The high-level resistance determinant of VAN in these strains was due to VanA-type cassette. MLST revealed two different STs for vancomycin-resistant Enterococcus faecium (VREm) and four different STs for vancomycin-resistant E. faecalis (VREs). Virulence genes in VREs were more than VREm, especially for 4942 isolated from blood. Gene acm and uppS were only identified in VREm, while virulence genes related to cytolysin were only found in E. faecalis. Further in vitro anti-biofilm testing and time-kill assay found FM (83 mg/L) combined with DAP (20.6 mg/L) and DAP monotherapy (47.1 mg/L) showed bactericidal effect against 8 tested VRE strains at 24h. CONCLUSIONSThe high-level resistance determinant of VAN in these strains was due to VanA-type cassette. FM combined with DAP might be greater potential therapeutic option against VRE.


Sign in / Sign up

Export Citation Format

Share Document