scholarly journals Accelerated Aging of Dermal Fibroblast-like Cells From the Senescence-Accelerated Mouse (SAM): Acceleration of Changes in DNA Ploidy Associated With In Vitro Cellular Aging

1998 ◽  
Vol 53A (1) ◽  
pp. B11-B18 ◽  
Author(s):  
H. Fujisawa ◽  
T. Nishikawa ◽  
B.-H. Zhu ◽  
N. Takeda ◽  
H. Jujo ◽  
...  
2021 ◽  
Vol 62 ◽  
pp. 473-476
Author(s):  
Ishandono Dachlan ◽  
Hendy Satrya Kurniawan ◽  
Aditya Wicaksana ◽  
Aditya Rifqi Fauzi ◽  
Firdian Makrufardi ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2769
Author(s):  
Jonne Oja ◽  
Lippo Lassila ◽  
Pekka K. Vallittu ◽  
Sufyan Garoushi

The aim of current in vitro research was to determine the effect of hydrothermal accelerated aging on the mechanical properties and wear of different commercial dental resin composites (RCs). In addition, the effect of expiration date of the composite prior its use was also evaluated. Five commercially available RCs were studied: Conventional RCs (Filtek Supreme XTE, G-aenial Posterior, Denfil, and >3y expired Supreme XTE), bulk-fill RC (Filtek Bulk Fill), and short fiber-reinforced RC (everX Posterior). Three-point flexural test was used for determination of ultimate flexural strength (n = 8). A vickers indenter was used for testing surface microhardness. A wear test was conducted with 15,000 chewing cycles using a dual-axis chewing simulator. Wear pattern was analyzed by a three-dimensional (3D) noncontact optical profilometer. Degree of C=C bond conversion of monomers was determined by FTIR-spectrometry. The specimens were either dry stored for 48 h (37 °C) or boiled (100 °C) for 16 h before testing. Scanning electron microscopy (SEM) was used to evaluate the microstructure of each material. Data were analyzed using ANOVA (p = 0.05). Hydrothermal aging had no significant effects on the surface wear and microhardness of tested RCs (p > 0.05). While flexural strength significantly decreased after aging (p < 0.05), except for G-aenial Posterior, which showed no differences. The lowest average wear depth was found for Filtek Bulk Fill (29 µm) (p < 0.05), while everX Posterior and Denfil showed the highest wear depth values (40, 39 µm) in both conditions. Passing the expiration date for 40 months did not affect the flexural strength and wear of tested RC. SEM demonstrated a significant number of small pits on Denfil’s surface after aging. It was concluded that the effect of accelerated aging may have caused certain weakening of the RC of some brands, whereas no effect was found with one brand of RC. Thus, the accelerated aging appeared to be more dependent on material and tested material property.


Author(s):  
Jeffrey T. Howard ◽  
Jud C. Janak ◽  
Alexis R. Santos-Lozada ◽  
Sarah McEvilla ◽  
Stephanie D. Ansley ◽  
...  

A growing body of literature on military personnel and veterans’ health suggests that prior military service may be associated with exposures that increase the risk of cardiovascular disease (CVD), which may differ by race/ethnicity. This study examined the hypothesis that differential telomere shortening, a measure of cellular aging, by race/ethnicity may explain prior findings of differential CVD risk in racial/ethnic groups with military service. Data from the first two continuous waves of the National Health and Nutrition Examination Survey (NHANES), administered from 1999–2002 were analyzed. Mean telomere length in base pairs was analyzed with multivariable adjusted linear regression with complex sample design, stratified by sex. The unadjusted mean telomere length was 225.8 base shorter for individuals with prior military service. The mean telomere length for men was 47.2 (95% CI: −92.9, −1.5; p < 0.05) base pairs shorter for men with military service after adjustment for demographic, socioeconomic, and behavioral variables, but did not differ significantly in women with and without prior military service. The interaction between military service and race/ethnicity was not significant for men or women. The results suggest that military service may contribute to accelerated aging as a result of health damaging exposures, such as combat, injury, and environmental contaminants, though other unmeasured confounders could also potentially explain the results.


Author(s):  
Mustafa Şükrü Kurt ◽  
Mehmet Enes Arslan ◽  
Ayşenur Yazici ◽  
İlkan Mudu ◽  
Elif Arslan

AbstractIn this study, borosilicate glass and 316 L stainless steel were coated with germanium (Ge) and tungsten (W) metals using the Magnetron Sputtering System. Surface structural, mechanical, and tribological properties of uncoated and coated samples were examined using SEM, X-ray diffraction (XRD), energy-dispersive spectroscopy, and tribometer. The XRD results showed that WGe2 chemical compound observed in (110) crystalline phase and exhibited a dense structure. According to the tribological analyses, the adhesion strength of the coated deposition on 316 L was obtained 32.8 N, and the mean coefficient of friction was around 0.3. Biocompatibility studies of coated metallic biomaterials were analyzed on fibroblast cell culture (Primary Dermal Fibroblast; Normal, Human, Adult (HDFa)) in vitro. Hoescht 33258 fluorescent staining was performed to investigate the cellular density and chromosomal abnormalities of the HDFa cell line on the borosilicate glasses coated with germanium–tungsten (W–Ge). Cell viabilities of HDFa cell line on each surface (W–Ge coated borosilicate glass, uncoated borosilicate glass, and cell culture plate surface) were analyzed by using (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) cytotoxicity assay. The antibiofilm activity of W–Ge coated borosilicate glass showed a significant reduction effect on Staphylococcus aureus (ATCC 25923) and Pseudomonas aeruginosa (ATCC 27853) adherence compared to control groups. In the light of findings, tungsten and germanium, which are some of the most common industrial materials, were investigated as biocompatible and antimicrobial surface coatings and recommended as bio-implant materials for the first time.


2021 ◽  
pp. 1-11
Author(s):  
Urvi Panwar ◽  
Kanchan Mishra ◽  
Parizad Patel ◽  
Sumit Bharadva ◽  
Salil Vaniawala ◽  
...  

The quantity of mesenchymal stem/stromal cells (MSCs) required for a particular therapy demands their subsequent expansion through ex vivo culture. During in vitro multiplication, they undergo replicative senescence which may alter their genetic stability. Therefore, this study was aimed to analyze cellular, molecular, and chromosomal alterations in Wharton’s jelly-derived MSCs (WJ-MSCs) during their in vitro sequential passages, where WJ-MSCs were sequentially passaged up to P14 and cells were evaluated at an interval of P2, P6, P10, and P14. They were examined for their morphology, tumorigenicity, surface markers, stemness markers, DNA damage, chromosomal aberration, and telomere length. We have processed five full-term delivered human umbilical cord samples to obtain WJ-MSCs. Morphological appearance observed at initial stages was small fine spindle-shaped WJ-MSCs which were transformed to flat, long, and broader cells in later passages. The cell proliferation rate was gradually decreased after the 10th passage. WJ-MSCs have expressed stemness markers OCT-4 and NANOG, while they showed high expression of positive surface markers CD90 and CD105 and lower expression of CD34 and CD45. They were non-tumorigenic with slow cellular aging during subsequent passages. There was no chromosomal abnormality up to the 14th passage, while increase in comet score and decrease in telomere length were observed in later passages. Hence, our study suggests that early and middle passaged (less than P10) WJ-MSCs are good candidates for clinical administration for treatment.


2021 ◽  
Vol 11 (11) ◽  
pp. 1808-1818
Author(s):  
Xiuli Li ◽  
Jigang Wang ◽  
Xin Li ◽  
Xiaoqian Hou ◽  
Hao Wang ◽  
...  

In our current study, porous heparin-polyvinylpyrrolidone/TiO2 nanocomposite (HpPVP/TiO2) bandage were prepared via the incorporation of TiO2 into HpPVP hydrogels for biomedical applications such as burn infection. The effect of the HpPVP hydrogels and the nanoparticles of TiO2 composition on the functional group and the surface properties of the as-fabricated bandages were characterized by Fourier transform infrared spectroscopy (FTIR) and X-ray diffractometry (XRD). The presence of TiO2 nanoparticles created the internal structure of the HpPVP hydrogel that aids in a homogeneous porous structure, as indicated by the scanning electron microscope (SEM). The size distribution of the TiO2 nanoparticles was measured using a transmission electron microscope (TEM). The studies on the mechanical properties of the HpPVP hydrogel indicate that the addition of TiO2 nanoparticles increases its strength. The prepared HpPVP/TiO2 nanocomposite dressing has excellent antimicrobial activity were tested against bacterial species (Staphylococcus aureus and Escherichia coli) and has good biocompatibility against human dermal fibroblast cells (HFFF2) for biological applications. In addition, in vivo evaluations in Kunming mice exposed that the as-fabricated HpPVP/TiO2 nanocomposite bandages increased the wound curing and facilitated accelerate skin cell construction along with collagen development. The synergistic effects of the HpPVP/TiO2 nanocomposite hydrogel dressing material, such as its excellent hydrophilic nature, good bactericidal activity, biocompatibility and wound closure rate through in vivo test makes it a suitable candidate for burn infections.


2021 ◽  
pp. 232020682110443
Author(s):  
Murat Eskitaşçıoğlu ◽  
Mehmet Şerif Akdeniz ◽  
Beyza Ünalan Değirmenci

Aims: To evaluate the color changes that occur after accelerated aging in feldspathic ceramic crowns cemented with three different dual-cured resin cements. Materials and Methods: For each of the A2-colored RelyX U200, G-CEM LinkForce, and Panavia V5 cement groups, 45 dies from A2-colored zirconia blocks and 45 crowns from CEREC blocks were prepared. Color measurements after 24 h of cementation (T1) and after cycles of aging of 1750 (T2), 3500 (T3), and 7000 (T4) in the thermal cycle device were made using SpectroShade Micro device. The coordinates of the color were used L*, a*, and b* as base and the color change was calculated with ∆ E00 in determining the color. One-way analysis of variance test was used to compare the times in terms of ∆ L*, ∆ a*, and ∆ b* values. Results: It was found that ∆ L* value decreased significantly in period of the T2, T3, and T4 times compared to T1 in all groups ( P < .05), whereas the change between period of T2, T3, and T4 times was not significant ( P > .05). The ∆ a* value increased significantly in the period of T3 and T4 times compared to T1 in the only G-CEM LinkForce group, whereas the ∆ b* value increased significantly in the period of T4 time compared to T1 in the only Panavia V5 group. The changes in ∆ E00 values, which were observed in all period of times, were found to be between 0.43 and 1.04, 0.43 and 1.43, and 0.40 and 0.97 in RelyX U200, G-CEM LinkForce, and Panavia V5 groups, respectively. Conclusion: After accelerated aging, it was found that the color of all cements became darker and the G-CEM LinkForce group turned red and the Panavia V5 group turned yellow. However, it was found that the color changes that occurred were within clinically acceptable visible levels.


Sign in / Sign up

Export Citation Format

Share Document