scholarly journals Development of the African Killifish as a New Model to Study Aging and Suspended animation

2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 743-743
Author(s):  
Anne Brunet

Abstract We have pioneered a new model organism for aging research, the naturally short-lived African killifish Nothobranchius furzeri. The African killifish lives in ephemeral pools of water in Africa, and has evolved a short life cycle adapted to this habitat. Its embryos can also resist drought until the next wet season in a state of ‘suspended life’. In laboratory conditions, the African killifish has a maximal lifespan of about 4-6 months, and is, so far, the shortest-lived vertebrate that can be bred in captivity. We have successfully transformed this natural short-lived vertebrate into a usable model organism for aging research, including de novo assembly of the genome and CRISPR-Cas9 mediated genome-editing. Our goal is to use this model to discover new principles underlying aging, longevity, and ‘suspended animation’ in vertebrates.

2017 ◽  
Author(s):  
Mario Baumgart ◽  
Emanuel Barth ◽  
Aurora Savino ◽  
Marco Groth ◽  
Philipp Koch ◽  
...  

ABSTRACTBackground: The short-lived fish Nothobranchius furzeri is the shortest-lived vertebrate that can be cultured in captivity and was recently established as a model organism for aging research. Small non-coding RNAs, especially miRNAs, are implicated in age-dependent control of gene expression.Results: Here, we present a comprehensive catalogue of miRNAs and several other non-coding RNA classes (ncRNAs) for Nothobranchius furzeri. Analyzing multiple small RNA-Seq libraries, we show most of these identified miRNAs are expressed in at least one of seven Nothobranchius species. Additionally, duplication and clustering of N. furzeri miRNAs was analyzed and compared to the four fish species Danio rerio, Oryzias latipes, Gasterosteus aculeatus and Takifugu rubripes. A peculiar characteristic of N. furzeri as compared to other teleosts was a duplication of the miR-29 cluster.Conclusion: The completeness of the catalogue we provide is comparable to that of zebrafish. This catalogue represents a basis to investigate the role of miRNAs in aging and development in this species.Availability: All supplementary material can be found online at http://www.rna.uni-jena.de/en/supplements/nothobranchius-furzeri-mirnome/.


2019 ◽  
Vol 9 (1) ◽  
pp. 103 ◽  
Author(s):  
Alessia Montesano ◽  
Elena De Felice ◽  
Adele Leggieri ◽  
Antonio Palladino ◽  
Carla Lucini ◽  
...  

Nesfatin-1 (Nesf-1) was identified as an anorexigenic and well conserved molecule in rodents and fish. While tissue distribution of NUCB2 (Nucleobindin 2)/Nesf-1 is discretely known in vertebrates, reports on ontogenetic expression are scarce. Here, we examine the age-related central and peripheral expression of NUCB2/Nesf-1 in the teleost African turquoise killifish Nothobranchius furzeri, a consolidated model organism for aging research. We focused our analysis on brain areas responsible for the regulation of food intake and the rostral intestinal bulb, which is analogous of the mammalian stomach. We hypothesize that in our model, the stomach equivalent structure is the main source of NUCB2 mRNA, displaying higher expression levels than those observed in the brain, mainly during aging. Remarkably, its expression significantly increased in the rostral intestinal bulb compared to the brain, which is likely due to the typical anorexia of aging. When analyzing the pattern of expression, we confirmed the distribution in diencephalic areas involved in food intake regulation at all age stages. Interestingly, in the rostral bulb, NUCB2 mRNA was localized in the lining epithelium of young and old animals, while Nesf-1 immunoreactive cells were distributed in the submucosae. Taken together, our results represent a useful basis for gaining deeper knowledge regarding the mechanisms that regulate food intake during vertebrate aging.


2021 ◽  
Vol 22 (2) ◽  
pp. 215-236
Author(s):  
Nadine Saul ◽  
Steffen Möller ◽  
Francesca Cirulli ◽  
Alessandra Berry ◽  
Walter Luyten ◽  
...  

AbstractSeveral biogerontology databases exist that focus on genetic or gene expression data linked to health as well as survival, subsequent to compound treatments or genetic manipulations in animal models. However, none of these has yet collected experimental results of compound-related health changes. Since quality of life is often regarded as more valuable than length of life, we aim to fill this gap with the “Healthy Worm Database” (http://healthy-worm-database.eu). Literature describing health-related compound studies in the aging model Caenorhabditis elegans was screened, and data for 440 compounds collected. The database considers 189 publications describing 89 different phenotypes measured in 2995 different conditions. Besides enabling a targeted search for promising compounds for further investigations, this database also offers insights into the research field of studies on healthy aging based on a frequently used model organism. Some weaknesses of C. elegans-based aging studies, like underrepresented phenotypes, especially concerning cognitive functions, as well as the convenience-based use of young worms as the starting point for compound treatment or phenotype measurement are discussed. In conclusion, the database provides an anchor for the search for compounds affecting health, with a link to public databases, and it further highlights some potential shortcomings in current aging research.


Animals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2226
Author(s):  
Sazia Kunvar ◽  
Sylwia Czarnomska ◽  
Cino Pertoldi ◽  
Małgorzata Tokarska

The European bison is a non-model organism; thus, most of its genetic and genomic analyses have been performed using cattle-specific resources, such as BovineSNP50 BeadChip or Illumina Bovine 800 K HD Bead Chip. The problem with non-specific tools is the potential loss of evolutionary diversified information (ascertainment bias) and species-specific markers. Here, we have used a genotyping-by-sequencing (GBS) approach for genotyping 256 samples from the European bison population in Bialowieza Forest (Poland) and performed an analysis using two integrated pipelines of the STACKS software: one is de novo (without reference genome) and the other is a reference pipeline (with reference genome). Moreover, we used a reference pipeline with two different genomes, i.e., Bos taurus and European bison. Genotyping by sequencing (GBS) is a useful tool for SNP genotyping in non-model organisms due to its cost effectiveness. Our results support GBS with a reference pipeline without PCR duplicates as a powerful approach for studying the population structure and genotyping data of non-model organisms. We found more polymorphic markers in the reference pipeline in comparison to the de novo pipeline. The decreased number of SNPs from the de novo pipeline could be due to the extremely low level of heterozygosity in European bison. It has been confirmed that all the de novo/Bos taurus and Bos taurus reference pipeline obtained SNPs were unique and not included in 800 K BovineHD BeadChip.


2021 ◽  
Vol 9 (5) ◽  
pp. 916
Author(s):  
Huan Zhang ◽  
Srutha Venkatesan ◽  
Beiyan Nan

A fundamental question in biology is how cell shapes are genetically encoded and enzymatically generated. Prevalent shapes among walled bacteria include spheres and rods. These shapes are chiefly determined by the peptidoglycan (PG) cell wall. Bacterial division results in two daughter cells, whose shapes are predetermined by the mother. This makes it difficult to explore the origin of cell shapes in healthy bacteria. In this review, we argue that the Gram-negative bacterium Myxococcus xanthus is an ideal model for understanding PG assembly and bacterial morphogenesis, because it forms rods and spheres at different life stages. Rod-shaped vegetative cells of M. xanthus can thoroughly degrade their PG and form spherical spores. As these spores germinate, cells rebuild their PG and reestablish rod shape without preexisting templates. Such a unique sphere-to-rod transition provides a rare opportunity to visualize de novo PG assembly and rod-like morphogenesis in a well-established model organism.


2015 ◽  
Vol 8s1 ◽  
pp. LPI.S31780 ◽  
Author(s):  
Mike F. Renne ◽  
Xue Bao ◽  
Cedric H. De Smet ◽  
Anton I. P. M. De Kroon

Membrane lipid homeostasis is maintained by de novo synthesis, intracellular transport, remodeling, and degradation of lipid molecules. Glycerophospholipids, the most abundant structural component of eukaryotic membranes, are subject to acyl chain remodeling, which is defined as the post-synthetic process in which one or both acyl chains are exchanged. Here, we review studies addressing acyl chain remodeling of membrane glycerophospholipids in Saccharomyces cerevisiae, a model organism that has been successfully used to investigate lipid synthesis and its regulation. Experimental evidence for the occurrence of phospholipid acyl chain exchange in cardiolipin, phosphatidylcholine, phosphatidylinositol, and phosphatidylethanolamine is summarized, including methods and tools that have been used for detecting remodeling. Progress in the identification of the enzymes involved is reported, and putative functions of acyl chain remodeling in yeast are discussed.


Author(s):  
Valentina Peona ◽  
Mozes P.K. Blom ◽  
Luohao Xu ◽  
Reto Burri ◽  
Shawn Sullivan ◽  
...  

AbstractGenome assemblies are currently being produced at an impressive rate by consortia and individual laboratories. The low costs and increasing efficiency of sequencing technologies have opened up a whole new world of genomic biodiversity. Although these technologies generate high-quality genome assemblies, there are still genomic regions difficult to assemble, like repetitive elements and GC-rich regions (genomic “dark matter”). In this study, we compare the efficiency of currently used sequencing technologies (short/linked/long reads and proximity ligation maps) and combinations thereof in assembling genomic dark matter starting from the same sample. By adopting different de-novo assembly strategies, we were able to compare each individual draft assembly to a curated multiplatform one and identify the nature of the previously missing dark matter with a particular focus on transposable elements, multi-copy MHC genes, and GC-rich regions. Thanks to this multiplatform approach, we demonstrate the feasibility of producing a high-quality chromosome-level assembly for a non-model organism (paradise crow) for which only suboptimal samples are available. Our approach was able to reconstruct complex chromosomes like the repeat-rich W sex chromosome and several GC-rich microchromosomes. Telomere-to-telomere assemblies are not a reality yet for most organisms, but by leveraging technology choice it is possible to minimize genome assembly gaps for downstream analysis. We provide a roadmap to tailor sequencing projects around the completeness of both the coding and non-coding parts of the genomes.


Biomolecules ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1421
Author(s):  
Valentina S. Evsiukova ◽  
Elizabeth A. Kulikova ◽  
Alexander V. Kulikov

Short-lived turquoise killifish (Nothobranchius furzeri) have become a popular model organism for neuroscience. In the present paper we study for the first time their behavior in the novel tank diving test and the levels of mRNA of various 5-HT-related genes in brains of 2-, 4- and 6-month-old males and females of N. furzeri. The marked effect of age on body mass, locomotor activity and the mRNA level of Tph1b, Tph2, Slc6a4b, Mao, Htr1aa, Htr2a, Htr3a, Htr3b, Htr4, Htr6 genes in the brains of N. furzeri males was shown. Locomotor activity and expression of the Mao gene increased, while expression of Tph1b, Tph2, Slc6a4b, Htr1aa, Htr2a, Htr3a, Htr3b, Htr4, Htr6 genes decreased in 6-month-old killifish. Significant effects of sex on body mass as well as on mRNA level of Tph1a, Tph1b, Tph2, Slc6a4b, Htr1aa, 5-HT2a, Htr3a, Htr3b, Htr4, and Htr6 genes were revealed: in general both the body mass and the expression of these genes were higher in males. N. furzeri is a suitable model with which to study the fundamental problems of age-related alterations in various mRNA levels related with the brains 5-HT system.


2021 ◽  
Author(s):  
Joachim Ruther ◽  
Lorena Prager ◽  
Tamara Pokorny

Fatty acids are crucial primary metabolites for virtually any creature on earth. Therefore, most organisms do not rely exclusively on nutritional supply with fatty acids but have the ability to synthesize fatty acids and triacylglycerides de novo from carbohydrates, a process called lipogenesis. The ubiquity of lipogenesis has been questioned by a series of studies reporting that many parasitic wasps (parasitoids) do not accumulate lipid mass despite having unlimited access to sugar. This has been interpreted as an evolutionary metabolic trait loss in parasitoids. Here, we demonstrate de novo biosynthesis of fatty acids from 13C-labeled α-D-glucose in eleven species of parasitoids from six families. We furthermore show with the model organism Nasonia vitripennis that lipogenesis occurs even when lipid reserves are still intact, but relative 13C-incorporation rates increase in females with widely depleted fat reserves. Therefore, we conclude that the presumed "lack of lipogenesis" in parasitoids needs to be re-evaluated.


Sign in / Sign up

Export Citation Format

Share Document