scholarly journals Draft genome sequence of Solanum aethiopicum provides insights into disease resistance, drought tolerance, and the evolution of the genome

GigaScience ◽  
2019 ◽  
Vol 8 (10) ◽  
Author(s):  
Bo Song ◽  
Yue Song ◽  
Yuan Fu ◽  
Elizabeth Balyejusa Kizito ◽  
Sandra Ndagire Kamenya ◽  
...  

Abstract Background The African eggplant (Solanum aethiopicum) is a nutritious traditional vegetable used in many African countries, including Uganda and Nigeria. It is thought to have been domesticated in Africa from its wild relative, Solanum anguivi. S. aethiopicum has been routinely used as a source of disease resistance genes for several Solanaceae crops, including Solanum melongena. A lack of genomic resources has meant that breeding of S. aethiopicum has lagged behind other vegetable crops. Results We assembled a 1.02-Gb draft genome of S. aethiopicum, which contained predominantly repetitive sequences (78.9%). We annotated 37,681 gene models, including 34,906 protein-coding genes. Expansion of disease resistance genes was observed via 2 rounds of amplification of long terminal repeat retrotransposons, which may have occurred ∼1.25 and 3.5 million years ago, respectively. By resequencing 65 S. aethiopicum and S. anguivi genotypes, 18,614,838 single-nucleotide polymorphisms were identified, of which 34,171 were located within disease resistance genes. Analysis of domestication and demographic history revealed active selection for genes involved in drought tolerance in both “Gilo” and “Shum” groups. A pan-genome of S. aethiopicum was assembled, containing 51,351 protein-coding genes; 7,069 of these genes were missing from the reference genome. Conclusions The genome sequence of S. aethiopicum enhances our understanding of its biotic and abiotic resistance. The single-nucleotide polymorphisms identified are immediately available for use by breeders. The information provided here will accelerate selection and breeding of the African eggplant, as well as other crops within the Solanaceae family.

2019 ◽  
Author(s):  
Bo Song ◽  
Yue Song ◽  
Yuan Fu ◽  
Elizabeth Balyejusa Kizito ◽  
Pamela Nahamya Kabod ◽  
...  

AbstractBackgroundS. aethiopicum is a close relative to S. melongena and has been routinely used to improve disease resistance in S. melongena. However, these efforts have been greatly limited by the lack of a reference genome and the clear understanding of the genes involved during biotic and abiotic stress response.ResultsWe present here a draft genome assembly of S. aethiopicum of 1.02 Gb in size, which is predominantly occupied by repetitive sequences (76.2%), particularly long terminal repeat elements. We annotated 37,681 gene models including 34,905 protein-coding genes. We observed an expansion of resistance genes through two rounds of amplification of LTR-Rs, occurred around 1.25 and 3.5 million years ago, respectively. The expansion also occurred in gene families related to drought tolerance. A number of 14,995,740 SNPs are identified by re-sequencing 65 S. aethiopicum genotypes including “Gilo” and “Shum” accessions, 41,046 of which are closely linked to resistance genes. The domestication and demographic history analysis reveals selection of genes involved in drought tolerance in both “Gilo” and “Shum” groups. A pan-genome of S. aethiopicum with a total of 36,250 protein-coding genes was assembled, of which 1,345 genes are missing in the reference genome.ConclusionsOverall, the genome sequence of S. aethiopicum increases our understanding of the genomic mechanisms of its extraordinary disease resistance and drought tolerance. The SNPs identified are available for potential use by breeders. The information provided here will greatly accelerate the selection and breeding of the African eggplant as well as other crops within the Solanaceae family.


2020 ◽  
Vol 21 (11) ◽  
pp. 1068-1077
Author(s):  
Xiaochao Sun ◽  
Bin Yang ◽  
Qunye Zhang

: Many studies have shown that the spatial distribution of genes within a single chromosome exhibits distinct patterns. However, little is known about the characteristics of inter-chromosomal distribution of genes (including protein-coding genes, processed transcripts and pseudogenes) in different genomes. In this study, we explored these issues using the available genomic data of both human and model organisms. Moreover, we also analyzed the distribution pattern of protein-coding genes that have been associated with 14 common diseases and the insert/deletion mutations and single nucleotide polymorphisms detected by whole genome sequencing in an acute promyelocyte leukemia patient. We obtained the following novel findings. Firstly, inter-chromosomal distribution of genes displays a nonstochastic pattern and the gene densities in different chromosomes are heterogeneous. This kind of heterogeneity is observed in genomes of both lower and higher species. Secondly, protein-coding genes involved in certain biological processes tend to be enriched in one or a few chromosomes. Our findings have added new insights into our understanding of the spatial distribution of genome and disease- related genes across chromosomes. These results could be useful in improving the efficiency of disease-associated gene screening studies by targeting specific chromosomes.


2020 ◽  
Vol 11 ◽  
Author(s):  
Tapan Kumar ◽  
Neha Tiwari ◽  
Chellapilla Bharadwaj ◽  
Ashutosh Sarker ◽  
Sneha Priya Reddy Pappula ◽  
...  

Chickpea (Cicer arietinum L.) is an economically important food legume grown in arid and semi-arid regions of the world. Chickpea is cultivated mainly in the rainfed, residual moisture, and restricted irrigation condition. The crop is always prone to drought stress which is resulting in flower drop, unfilled pods, and is a major yield reducer in many parts of the world. The present study elucidates the association between candidate gene and morpho-physiological traits for the screening of drought tolerance in chickpea. Abiotic stress-responsive gene Dehydrin (DHN) was identified in some of the chickpea genotypes based on the sequence similarity approach to play a major role in drought tolerance. Analysis of variance revealed a significant effect of drought on relative water content, membrane stability index, plant height, and yield traits. The genotypes Pusa1103, Pusa362, and ICC4958 were found most promising genotypes for drought tolerance as they maintained the higher value of osmotic regulations and yield characters. The results were further supported by a sequence similarity approach for the dehydrin gene when analyzed for the presence of single nucleotide polymorphisms (SNPs) and indels. Homozygous indels and single nucleotide polymorphisms were found after the sequencing in some of the selected genotypes.


2006 ◽  
Vol 188 (12) ◽  
pp. 4453-4463 ◽  
Author(s):  
Patrick S. G. Chain ◽  
Ping Hu ◽  
Stephanie A. Malfatti ◽  
Lyndsay Radnedge ◽  
Frank Larimer ◽  
...  

ABSTRACT Yersinia pestis, the causative agent of bubonic and pneumonic plagues, has undergone detailed study at the molecular level. To further investigate the genomic diversity among this group and to help characterize lineages of the plague organism that have no sequenced members, we present here the genomes of two isolates of the “classical” antiqua biovar, strains Antiqua and Nepal516. The genomes of Antiqua and Nepal516 are 4.7 Mb and 4.5 Mb and encode 4,138 and 3,956 open reading frames, respectively. Though both strains belong to one of the three classical biovars, they represent separate lineages defined by recent phylogenetic studies. We compare all five currently sequenced Y. pestis genomes and the corresponding features in Yersinia pseudotuberculosis. There are strain-specific rearrangements, insertions, deletions, single nucleotide polymorphisms, and a unique distribution of insertion sequences. We found 453 single nucleotide polymorphisms in protein-coding regions, which were used to assess the evolutionary relationships of these Y. pestis strains. Gene reduction analysis revealed that the gene deletion processes are under selective pressure, and many of the inactivations are probably related to the organism's interaction with its host environment. The results presented here clearly demonstrate the differences between the two biovar antiqua lineages and support the notion that grouping Y. pestis strains based strictly on the classical definition of biovars (predicated upon two biochemical assays) does not accurately reflect the phylogenetic relationships within this species. A comparison of four virulent Y. pestis strains with the human-avirulent strain 91001 provides further insight into the genetic basis of virulence to humans.


2017 ◽  
Vol 114 (34) ◽  
pp. 9158-9163 ◽  
Author(s):  
Steven Timmermans ◽  
Marc Van Montagu ◽  
Claude Libert

Mouse inbred strains remain essential in science. We have analyzed the publicly available genome sequences of 36 popular inbred strains and provide lists for each strain of protein-coding genes that acquired sequence variations that cause premature STOP codons, loss of STOP codons and single nucleotide polymorphisms, and short in-frame insertions and deletions. Our data give an overview of predicted defective proteins, including predicted impact scores, of all these strains compared with the reference mouse genome of C57BL/6J. These data can also be retrieved via a searchable website (mousepost.be) and allow a global, better interpretation of genetic background effects and a source of naturally defective alleles in these 36 sequenced classical and high-priority mouse inbred strains.


Author(s):  
Le Wang ◽  
Tingting Zhu ◽  
Juan C Rodriguez ◽  
Karin R Deal ◽  
Jorge Dubcovsky ◽  
...  

Abstract Aegilops tauschii is the donor of the D subgenome of hexaploid wheat and an important genetic resource. The reference-quality genome sequence Aet v4.0 for Ae. tauschii acc. AL8/78 was therefore an important milestone for wheat biology and breeding. Further advances in sequencing acc. AL8/78 and release of the Aet v5.0 sequence assembly are reported here. Two new optical maps were constructed and used in the revision of pseudomolecules. Gaps were closed with Pacific Biosciences long-read contigs, decreasing the gap number by 38,899. Transposable elements and protein-coding genes were reannotated. The number of annotated high-confidence genes was reduced from 39,635 in Aet v4.0 to 32,885 in Aet v5.0. A total of 2,245 biologically important genes, including those affecting plant phenology, grain quality, and tolerance of abiotic stresses in wheat was manually annotated and disease-resistance genes were annotated by a dedicated pipeline. Disease-resistance genes encoding nucleotide-binding site domains, receptor-like protein kinases, and receptor-like proteins were preferentially located in distal chromosome regions, whereas those encoding transmembrane coiled-coil proteins were dispersed more evenly along the chromosomes. Discovery, annotation, and expression analyses of microRNA (miRNA) precursors, mature miRNAs, and phasiRNAs are reported, including miRNA target genes. Other small RNAs, such as hc-siRNAs and tRFs, were characterized. These advances enhance the utility of the Ae. tauschii genome sequence for wheat genetics, biotechnology, and breeding.


2013 ◽  
Vol 26 (1) ◽  
pp. 75-84 ◽  
Author(s):  
F.L.M. Ricciardolo ◽  
V. Sorbello ◽  
M. Silvestri ◽  
M. Giacomelli ◽  
V.M.G. Debenedetti ◽  
...  

Asthma is a chronic airway inflammatory disease associated with airway hyperresponsiveness which affects subjects with genetic predisposition. An association has been reported between some polymorphisms in various cytokine genes and asthma. Most of them are single nucleotide polymorphisms (SNPs). These polymorphisms are detected in the protein coding sequence or in the promoter region thus influencing cytokine production. We investigated the involvement of SNP mapping in 5 cytokine genes in mild to severe asthmatics of Italian Caucasians. The frequency of alleles and genotypes, relatively to 10 allelic specificities of the cytokine genes, was defined in 57 asthmatics and in 124 control subjects by a Polymerase Chain Reaction-Sequence Specific Primer method. TNF-α -308A and TNF-α -238A allele frequencies were higher in asthmatics than in controls (p<0.001). Significant differences in the frequency of IL-4 -590T allele and of IL-4Rα + 1902A allele were also detected in asthmatics in comparison with controls (p<0.001 and p=0.005, respectively). Similarly, IL-1α -889C allele was present in 84.1% of asthmatics and in 70.2% of controls (p=0.013). Furthermore, the IL-4Rα + 1902A/A and IL-1α -889C/C homozygous conditions and the TNF-α -308G/A, TNF-α -238G/A, IL-4 -590T/C and IL-10 -1082G/A heterozygous conditions were significantly associated with asthma (p<0.05). ACA haplotype of IL-10 was observed only in asthmatic patients. This study reports, for the first time, the frequency of 10 different single nucleotide polymorphisms in 5 cytokine genes in the Italian Caucasians. Furthermore, we also indicate that in our population some single nucleotide polymorphisms are associated with mild to severe bronchial asthma.


2018 ◽  
Vol 19 (7) ◽  
pp. 2057 ◽  
Author(s):  
Krishna Bhattarai ◽  
Weining Wang ◽  
Zhe Cao ◽  
Zhanao Deng

Impatiens downy mildew (IDM) is a devastating disease to garden impatiens. A good understanding of IDM resistance in New Guinea impatiens is essential for improving garden impatiens resistance to this disease. The present study was conducted to sequence, assemble, annotate and compare the leaf transcriptomes of two impatiens cultivars differing in resistance to IDM, reveal sequence polymorphisms and identify candidate genes for IDM resistance. RNA-Seq was performed on cultivars Super Elfin® XP Pink (SEP) and SunPatiens® Compact Royal Magenta (SPR). De novo assembly of obtained sequence reads resulted in 121,497 unigenes with an average length of 1156 nucleotides and N50 length of 1778 nucleotides. Searching the non-redundant protein and non-redundant nucleotide, Swiss-Prot, Kyoto Encyclopedia of Genes and Genomes and Clusters of Orthologous Groups and Gene Ontology databases, resulted in annotation of 57.7% to 73.6% of the unigenes. Fifteen unigenes were highly similar to disease resistance genes and more abundant in the IDM-resistant cultivar than in the susceptible cultivar. A total of 22,484 simple sequence repeats (SSRs) and 245,936 and 120,073 single nucleotide polymorphisms (SNPs) were identified from SPR and SEP respectively. The assembled transcripts and unigenes, identified disease resistance genes and SSRs and SNPs sites will be a valuable resource for improving impatiens and its IDM resistance.


Sign in / Sign up

Export Citation Format

Share Document