scholarly journals Migration-based near real-time detection and location of microearthquakes with parallel computing

2020 ◽  
Vol 221 (3) ◽  
pp. 1941-1958 ◽  
Author(s):  
Mariangela Guidarelli ◽  
Peter Klin ◽  
Enrico Priolo

SUMMARY Prompt detection and accurate location of microseismic events are of great importance in seismic monitoring at local scale and become essential steps in monitoring underground activities, such as oil and gas production, geothermal exploitation and underground gas storage, for implementing effective control procedures to limit the induced seismicity hazard. In this study, we describe an automatic and robust earthquake detection and location procedure that exploits high-performance computing and allows the analysis of microseismic events in near real-time using the full waveforms recorded by a local seismic network. The implemented technique, called MigraLoc, is based on the space–time migration of continuous waveform data and consists of the following steps: (1) enhancement of P and S arrivals in noisy signals through a characteristic function, by means of the time–frequency analysis of the seismic records; (2) blind event location based on delay-and-sum approach systematically scanning the volume of potential hypocentres; (3) detection notification according to the information content of the hypocentre probability distribution obtained in the previous step. The technique implies that theoretical arrival times are pre-calculated for each station and all potential hypocentres as a solution of the seismic-ray equation in a given 3-D medium. As a test case, we apply MigraLoc to two, low-magnitude, earthquake swarms recorded by the Collalto Seismic Network in the area of the Veneto Alpine foothills (Italy) in 2014 and 2017, respectively. Thanks to MigraLoc, we can increase the number of events reported in the network catalogue by more than 25 per cent. The automatically determined locations prove to be consistent with, and overall more accurate than, those obtained by classical methods using manual time-arrival picks. The proposed method works preferably with dense networks that provide signals with some degree of coherency. It shows the following advantages compared to other classical location methods: it works on the continuous stream of data as well as on selected intervals of waveforms; it detects more microevents owing to the increased signal-to-noise ratio of the stacked signal that feeds the characteristic function; it works with any complex 3-D model with no additional effort; it is completely automatic, once calibrated, and it does not need any manual picking.

2020 ◽  
Vol 91 (4) ◽  
pp. 2127-2140 ◽  
Author(s):  
Glenn Thompson ◽  
John A. Power ◽  
Jochen Braunmiller ◽  
Andrew B. Lockhart ◽  
Lloyd Lynch ◽  
...  

Abstract An eruption of the Soufrière Hills Volcano (SHV) on the eastern Caribbean island of Montserrat began on 18 July 1995 and continued until February 2010. Within nine days of the eruption onset, an existing four-station analog seismic network (ASN) was expanded to 10 sites. Telemetered data from this network were recorded, processed, and archived locally using a system developed by scientists from the U.S. Geological Survey (USGS) Volcano Disaster Assistance Program (VDAP). In October 1996, a digital seismic network (DSN) was deployed with the ability to capture larger amplitude signals across a broader frequency range. These two networks operated in parallel until December 2004, with separate telemetry and acquisition systems (analysis systems were merged in March 2001). Although the DSN provided better quality data for research, the ASN featured superior real-time monitoring tools and captured valuable data including the only seismic data from the first 15 months of the eruption. These successes of the ASN have been rather overlooked. This article documents the evolution of the ASN, the VDAP system, the original data captured, and the recovery and conversion of more than 230,000 seismic events from legacy SUDS, Hypo71, and Seislog formats into Seisan database with waveform data in miniSEED format. No digital catalog existed for these events, but students at the University of South Florida have classified two-thirds of the 40,000 events that were captured between July 1995 and October 1996. Locations and magnitudes were recovered for ∼10,000 of these events. Real-time seismic amplitude measurement, seismic spectral amplitude measurement, and tiltmeter data were also captured. The result is that the ASN seismic dataset is now more discoverable, accessible, and reusable, in accordance with FAIR data principles. These efforts could catalyze new research on the 1995–2010 SHV eruption. Furthermore, many observatories have data in these same legacy data formats and might benefit from procedures and codes documented here.


2015 ◽  
Vol 137 (03) ◽  
pp. S4-S7
Author(s):  
Matthew A. Franchek

This paper explores the reach and use of subsea engineering. Subsea engineering presents many new challenges and opportunities for engineers from any discipline. The fundamental engineering challenges facing today’s ultra-deepwater oil and gas production reside under a new engineering discipline, the subsea engineer. Designing subsea systems for 30-year-long controllability, safety, maintenance, and real-time optimization are critical issues and present an open-ended problem. Safety is absolutely a primary focus on any subsea production system design. There must be multiple independent safety paths in place to isolate a producing well. The most common subsea safety system is located within the well. Pioneering work performed at the university of Houston provided mathematical relationships to predict the flow regime given gas and liquid velocities, including dispersed bubble flow, elongated bubble flow, slug flow, stratified flow, etc. There is an unexplored coupling between the transient multiphase flow and the heat transfer. The field of modeling multiphase transient transport is important to the subsea architecture design and real-time optimization of subsea production.


2019 ◽  
Vol 121 ◽  
pp. 04010
Author(s):  
Victor Orlov ◽  
Leonid Levkov ◽  
Vladimir Dub ◽  
Alan Balikoev ◽  
Dmitry Shurygin

We conducted a brief review of current production and application of duplex and super duplex steels for manufacture of equipment exposed to the hazard of sulphide stress-corrosion cracking, sea water and other corrosive environment. The super duplex steel with enhanced corrosion-mechanical characteristics in comparison with the known steels of austenitic-ferritic class was developed. Based on the concepts of formation of a special structure of two-phase austenitic-ferritic steels in the process of crystallization, the possibilities of compositional, technological, thermal and special impact techniques are considered and advanced ways of controlling physical, chemical, structural homogeneity and properties of super duplex steels are developed. Electroslag remelting with the application of low-frequency alternating current provides effective control over the length of the two-phase area, the size of the primary dendrites of the austenitic and ferritic phases, the average distance between their axes, the parameters of the crystallizing cell, the development of liquation phenomena and the size of the growing non-metallic phases. Within framework of the proposed approach, the thermodynamic and kinetic conditions for the formation and growth of hardening phases are assessed, a new composition and a complex technology for the manufacture of corrosion-resistant super duplex steels for gas and oil production equipment has been developed. Thermodynamically stable, having sizes of 30-300 nm, niobium nitrides and carbonitrides are located inside the grains of the ferritic phase. At the same time, the sigma phase and chromium carbide precipitates at the intergrain boundaries are not observed. The results of the determination of mechanical and corrosion properties in accordance with the NACE TM 0177 standard (method A), tests of corrosion witness-samples in field conditions demonstrate the advantages and prospects of using new super duplex steel for the manufacture of oil and gas production equipment operating in an environment with high H2S content and CO2 under significant mechanical loads, without the risk of brittle fracture.


2021 ◽  
Author(s):  
M. F. Amir

As appointed to represent the Indonesian government for managing entire upstream oil and gas business and operations throughout Indonesia, the Special Task Force For Upstream Oil and the Gas Business Activities Republic of Indonesia or known as SKK Migas, have established a vision to integrate monitoring all Production Sharing Contract (PSC) operators in Indonesia, transforming the conventional-manual approach—which was previously less effective and efficient, into an online integrated monitoring system. It is motivated by the digital transformation trend in the industrial world, which brings a new wave of opportunities to raise effectiveness and efficiency. However, the challenges are not easy. Despite the fact that Indonesia’s oil and gas industry has been operating for a long time ago, various technologies, some of which have used old technology, are the actual conditions that must be handled. Therefore, a systematical strategy is required. Step by step approach, by integrating real-time connections of plant information management systems are proposed to incorporate the major production systems, which are responsible for producing more than 80% of 6.600 million standard cubic feet of gas per day and 700 thousand barrels of oil per day, from major oil and gas companies in Indonesia. The system was successfully built, which provides integrated real-time monitoring dashboards of major upstream operations in Indonesia and connected online with automatic reporting systems and early warning systems. The system’s dashboards and notifications give flexibility in connection, which can be accessed anytime and anywhere if an internet connection is available. During the pandemic COVID-19, which restricts inspection activities to the fields, the system is proven effective in monitoring points of view without losing supervision over the operational aspects, which assurances the achievement of the executed programs. In conclusion, the contribution of the presented work is the digital transformation in the oil and gas sector in Indonesia in terms of operational supervision, which successfully creates a collaborative working environment in managing the oil and gas production target achievement. It changes the interaction between government and PSC operator companies regarding data capture and process monitoring, bringing a new era in supporting the decision-making process.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Zhaoxing Lv ◽  
Qianqian Ji ◽  
Weijie Ren

Sandstone and coal are the two most common types of reservoirs in nature. The permeability of sandstone in oil-bearing formations controls its oil and gas production; the permeability of the coal seam containing gas has a crucial influence on the gas drainage efficiency. One of the main factors affecting rock permeability is the spatial distribution and connectivity of pores and fissures in the rock. In this paper, a small-sized sample with a diameter of 5 mm and a height of 10 mm was used for the test. The rock samples under different stress states were scanned in real-time during the seepage testing. Based on 2D images, a 3D digital sample was reconstructed. We extracted the pores and fissures from the 3D digital sample, studied the size and distribution of the largest cluster in the sample, and revealed the influence of confining pressure and seepage pressure on the percolation probability and permeability of the sample. The research results show that brittle sandstone and plastic coal, two types of rocks with completely different properties of mechanics, have obvious differences in the spatial distribution of the largest clusters. Under the same stress state, in brittle sandstone-like rocks, the connectivity of the fissures is the primary factor affecting permeability, and the pores are the auxiliary factor; for plastic rocks such as coal, the situation is just the opposite, pores are the primary factor affecting permeability, and fissures are the auxiliary factor. The research results answer the question: Hydraulic fracturing technology can increase the oil and gas production of sandstone reservoirs but cannot increase the drainage efficiency of coalbed methane.


2019 ◽  
Vol 91 (1) ◽  
pp. 399-414 ◽  
Author(s):  
Kadek Hendrawan Palgunadi ◽  
Natalia Poiata ◽  
Jannes Kinscher ◽  
Pascal Bernard ◽  
Francesca De Santis ◽  
...  

Abstract Recent studies have demonstrated the success of automatic full-waveform detection and location methods in analyzing and monitoring natural and induced seismicity. These approaches have been shown to provide a significant improvement in events detectability, increasing the significance of statistical analysis that permits to identify small changes of seismicity rates in space and time. Although currently nontrivial and by far nonstandard, application of such methods to seismic monitoring of active mines could significantly improve forecasting of potential destructive rockburst events. The main challenges of such applications are related to the presence of a wide range of seismic noise sources that have to do with mining activity and a high sampling rate of recorded data (several kHz), posing problems for real-time data transfer and processing. In this study, we propose an adapted full-waveform-based automatic method for the detection and location of microseismic events that makes use of continuous seismic records from an in-mine seismic network and can be adjusted to a near-real-time monitoring scheme. The method consists of two steps: (1) event extraction and amplitude ratio-based preliminary location and (2) event relocation using a coherency-based backprojection approach. The event extraction, based on multiband signal characterization implemented in the first step, allows us to overcome the challenge of high sampling rate data (8 kHz), reducing the overall volume of transferred data and providing an energy-based signal classification scheme. This allows us to remove a significant number of machinery noise sources. The technique is developed and tested on the case study of the Garpenberg mine (Sweden) monitored by a local seismic network that is maintained by Ineris. We demonstrate the improvement in event detection capacity by a factor of 50, compared with the standard triggered-based monitoring schemes. This increased number of detected microseismic events permits us to investigate the migration pattern of induced microseismicity that is generated in response to production blast.


Author(s):  
Jayne M. Bormann ◽  
Emily A. Morton ◽  
Kenneth D. Smith ◽  
Graham M. Kent ◽  
William S. Honjas ◽  
...  

Abstract The Nevada Seismological Laboratory (NSL) at the University of Nevada, Reno, installed eight temporary seismic stations following the 15 May 2020 Mww 6.5 Monte Cristo Range earthquake. The mainshock and resulting aftershock sequence occurred in an unpopulated and sparsely instrumented region of the Mina deflection in the central Walker Lane, approximately 55 km west of Tonopah, Nevada. The temporary stations supplement NSL’s permanent seismic network, providing azimuthal coverage and near-field recording of the aftershock sequence beginning 1–3 days after the mainshock. We expect the deployment to remain in the field until May 2021. NSL initially attempted to acquire the Monte Cristo Range deployment data in real time via cellular telemetry; however, unreliable cellular coverage forced NSL to convert to microwave telemetry within the first week of the sequence to achieve continuous real-time acquisition. Through 31 August 2020, the temporary deployment has captured near-field records of three aftershocks ML≥5 and 25 ML 4–4.9 events. Here, we present details regarding the Monte Cristo Range deployment, instrumentation, and waveform availability. We combine this information with waveform availability and data access details from NSL’s permanent seismic network and partner regional seismic networks to create a comprehensive summary of Monte Cristo Range sequence data. NSL’s Monte Cristo Range temporary and permanent station waveform data are available in near-real time via the Incorporated Research Institutions for Seismology Data Management Center. Derived earthquake products, including NSL’s earthquake catalog and phase picks, are available via the Advanced National Seismic System Comprehensive Earthquake Catalog. The temporary deployment improved catalog completeness and location quality for the Monte Cristo Range sequence. We expect these data to be useful for continued study of the Monte Cristo Range sequence and constraining crustal and seismogenic properties of the Mina deflection and central Walker Lane.


2016 ◽  
Vol 50 (3) ◽  
pp. 87-91 ◽  
Author(s):  
Morifumi Takaesu ◽  
Hiroki Horikawa ◽  
Kentaro Sueki ◽  
Narumi Takahashi ◽  
Akira Sonoda ◽  
...  

AbstractMega-thrust earthquakes are anticipated to occur in the Nankai Trough in Southwest Japan. In order to monitor seismicity, crustal deformations, and tsunamis in earthquake source areas, we deployed the seafloor seismic network DONET (Dense Ocean-floor Network System for Earthquakes and Tsunamis) in 2010 (Kaneda et al., 2015; Kawaguchi et al., 2015). The DONET system consists of a total of 20 stations that are composed of multiple types of sensors, including strong-motion seismometers and quartz pressure gauges. These stations are densely distributed at an average distance of 15‐20 km and cover from near the trench axis to coastal areas. Observed data are transferred to a land station through a fiber-optic cable and then to the Japan Agency for Marine-Earth Science and Technology (JAMSTEC) data management center through a private network in real time.After the 2011 earthquake off the Pacific coast of Tohoku, each local government close to the Nankai Trough sought to devise a disaster prevention scheme. These local governments requested that JAMSTEC disseminate the DONET data along with other research capabilities so that they could exploit this important earthquake information. In order to provide local government access to the DONET data, which are recorded ostensibly for research purposes, we have developed a web application system, REIS (real-time earthquake information system), that provides seismic waveform data to some local governments close to the Nankai Trough. In the present paper, we introduce the specifications of REIS and its system architecture.


Sign in / Sign up

Export Citation Format

Share Document