Optimal resolution tomography with error tracking and the structure of the crust and upper mantle beneath Ireland and Britain

Author(s):  
Raffaele Bonadio ◽  
Sergei Lebedev ◽  
Thomas Meier ◽  
Pierre Arroucau ◽  
Andrew J Schaeffer ◽  
...  

Summary The classical Backus-Gilbert method seeks localized Earth-structure averages at the shortest length scales possible, given a dataset, data errors, and a threshold for acceptable model errors. The resolving length at a point is the width of the local averaging kernel, and the optimal averaging kernel is the narrowest one such that the model error is below a specified level. This approach is well suited for seismic tomography, which maps three-dimensional Earth structure using large sets of seismic measurements. The continual measurement-error decreases and data-redundancy increases have reduced the impact of random errors on tomographic models. Systematic errors, however, are resistant to data redundancy and their effect on the model is difficult to predict. Here, we develop a method for finding the optimal resolving length at every point, implementing it for surface-wave tomography. As in the Backus-Gilbert method, every solution at a point results from an entire-system inversion, and the model error is reduced by increasing the model-parameter averaging. The key advantage of our method stems from its direct, empirical evaluation of the posterior model error at a point. We first measure inter-station phase velocities at simultaneously recording station pairs and compute phase-velocity maps at densely, logarithmically spaced periods. Numerous versions of the maps with varying smoothness are then computed, ranging from very rough to very smooth. Phase-velocity curves extracted from the maps at every point can be inverted for shear-velocity (VS) profiles. As we show, errors in these phase-velocity curves increase nearly monotonically with the map roughness. We evaluate the error by isolating the roughness of the phase-velocity curve that cannot be explained by any Earth structure and determine the optimal resolving length at a point such that the error of the local phase-velocity curve is below a threshold. A 3D VS model is then computed by the inversion of the composite phase-velocity maps with an optimal resolution at every point. The estimated optimal resolution shows smooth lateral variations, confirming the robustness of the procedure. Importantly, the optimal resolving length does not scale with the density of the data coverage: some of the best-sampled locations display relatively low lateral resolution, probably due to systematic errors in the data. We apply the method to image the lithosphere and underlying mantle beneath Ireland and Britain. Our very large dataset was created using new data from Ireland Array, the Irish National Seismic Network, the UK Seismograph Network, and other deployments. A total of 11238 inter-station dispersion curves, spanning a very broad total period range (4–500 s), yield unprecedented data coverage of the area and provide fine regional resolution from the crust to the deep asthenosphere. The lateral resolution of the 3D model is computed explicitly and varies from 39 km in central Ireland to over 800 km at the edges of the area, where the data coverage declines. Our tomography reveals pronounced, previously unknown variations in the lithospheric thickness beneath Ireland and Britain, with implications for their Caledonian assembly and for the mechanisms of the British Tertiary Igneous Province magmatism.

2021 ◽  
Author(s):  
Raffaele Bonadio ◽  
Sergei Lebedev ◽  
Thomas Meier ◽  
Pierre Arroucau ◽  
Andrew Schaeffer ◽  
...  

<p>Spatial resolution, as the ability to distinguish different features that are close together, is a fundamental concept in seismic tomography and other imaging fields. In contrast with microscopy or telescopy, seismic tomography’s images are computed, and their resolution has a complex, non-linear dependence on the data sampling and errors. Linear inverse theory provides a useful resolution-analysis approach, defining resolution in terms of the closeness of the resolution matrix to the identity matrix. This definition is similar to the universal, multi-disciplinary one in some contexts but diverges from it markedly in others. In this work, we adopt the universal definition of resolution (the minimum distance at which two spike anomalies can be resolved). The highest achievable resolution of a tomographic model then varies spatially and depends on the data sampling and errors in the data. We show that the propagation of systematic errors is resistant to data redundancy and results in models dominated by noise if the target resolution is too high. This forces one to look for smoother models and effectively limits the resolution. Here, we develop a surface-wave tomography method that finds optimal lateral resolution at every point by means of error tracking.<br>We first measure interstation phase velocities at simultaneously recording station pairs and compute phase-velocity maps at densely, logarithmically spaced periods. Multiple versions of the maps with varying smoothness are computed, ranging from very rough to very smooth. Phase-velocity curves extracted from the maps at every point are then inverted for shear-velocity (V<sub>S</sub>) profiles. As we show, errors in these phase-velocity curves increase nearly monotonically with the map roughness. Very smooth V<sub>S</sub> models computed from very smooth phase-velocity maps will be the most accurate, but at a cost of a loss of most structural information. At the other extreme, models that are too rough will be dominated by noise. We define the optimal resolution at a point such that the error of the local phase-velocity curve is below an empirical threshold. The error is estimated by isolating the roughness of the phase-velocity curve that cannot be explained by any Earth structure.<br>A 3D V<sub>S</sub> model is then computed by the inversion of the phase-velocity maps with the optimal resolution at every point. The estimated optimal resolution shows smooth lateral variations, confirming the robustness of the procedure. Importantly, optimal resolution does not scale with the density of the data coverage: some of the best-sampled locations require relatively low lateral resolution, probably due to systematic errors in the data.<br>We apply the method to image the lithosphere and underlying mantle beneath Ireland and Britain, using 11238 newly measured, broadband, inter-station dispersion curves. The lateral resolution of the 3D model is computed explicitly and varies from 39 km in central Ireland to over 800 km at the region boundaries, where the data coverage declines. Our tomography reveals pronounced, previously unknown variations in the lithospheric thickness beneath the region, with implications for the Caledonian assembly of the islands’ landmass and the mechanism of the magmatism of the British Tertiary Igneous Province.</p>


2020 ◽  
Author(s):  
Raffaele Bonadio ◽  
Sergei Lebedev ◽  
Pierre Arroucau ◽  
Andrew Schaeffer ◽  
Andrea Licciardi ◽  
...  

<p>The maximum achievable resolution of a tomographic model varies spatially and depends on the data sampling and errors in the data. Adaptive parameterization schemes match the spatial variations in data sampling but do not address the effects of the errors. The propagation of systematic errors, however, is resistant to data redundancy and results in models dominated by noise if the target resolution is too high. This forces us to look for smoother models and thus limits the imaging resolution.<br><br>We develop a surface-wave tomography method that finds optimal lateral resolution at every point by means of error tracking. We first measure inter-station phase-velocities at simultaneously recording station pairs and compute phase-velocity maps at densely, logarithmically spaced periods. Unlike in the classical approach, multiple versions of the maps with varying smoothness constraints are computed, so that the maps range from very rough to very smooth. Phase-velocity curves extracted from the maps at every point can then be inverted for shear-velocity (V<sub>s</sub>) profiles. As we show, errors in these phase-velocity curves increase nearly monotonically with the map roughness. Very smooth V<sub>s</sub> models computed from very smooth phase-velocity maps will be the most robust, but at a cost of a loss of most structural information. At the other extreme, models that are too rough will be dominated by noise. We define the optimal resolution at a point such that the error of the local phase-velocity curve is below an empirical threshold. The error is estimated by isolating the roughness of the phase-velocity curve that cannot be explained by any Earth structure. A 3D V<sub>s</sub> model is then computed by the inversion of the phase-velocity maps with the optimal resolution at every point. The estimated optimal resolution shows smooth lateral variations, confirming the robustness of the procedure. Importantly, optimal resolution does not scale with the density of the data coverage: some of the best-sampled locations require relatively low lateral resolution, probably due to systematic data errors. We apply the method to image the Ireland’s and Britain’s upper mantle, using our large, new regional dataset. We report a pronounced thinning of the lithosphere beneath the British Tertiary Igneous Province, with important implications for the Paleogene uplift and volcanism in the region.</p>


Author(s):  
E Gaztanaga ◽  
S J Schmidt ◽  
M D Schneider ◽  
J A Tyson

Abstract We test the impact of some systematic errors in weak lensing magnification measurements with the COSMOS 30-band photo-z Survey flux limited to Iauto < 25.0 using correlations of both source galaxy counts and magnitudes. Systematic obscuration effects are measured by comparing counts and magnification correlations. We use the ACS-HST catalogs to identify potential blending objects (close pairs) and perform the magnification analyses with and without blended objects. We find that blending effects start to be important (∼ 0.04 mag obscuration) at angular scales smaller than 0.1 arcmin. Extinction and other systematic obscuration effects can be as large as 0.10 mag (U-band) but are typically smaller than 0.02 mag depending on the band. After applying these corrections, we measure a 3.9σ magnification signal that is consistent for both counts and magnitudes. The corresponding projected mass profiles of galaxies at redshift z ≃ 0.6 (MI ≃ −21) is Σ = 25 ± 6M⊙h3/pc2 at 0.1 Mpc/h, consistent with NFW type profile with M200 ≃ 2 × 1012M⊙h/pc2. Tangential shear and flux-size magnification over the same lenses show similar mass profiles. We conclude that magnification from counts and fluxes using photometric redshifts has the potential to provide complementary weak lensing information in future wide field surveys once we carefully take into account systematic effects, such as obscuration and blending.


Author(s):  
Peter Gál ◽  
Miloš Mrva ◽  
Matej Meško

The aim of the paper is to demonstrate the impact of heuristics, biases and psychological traps on the decision making. Heuristics are unconscious routines people use to cope with the complexity inherent in most decision situations. They serve as mental shortcuts that help people to simplify and structure the information encountered in the world. These heuristics could be quite useful in some situations, while in others they can lead to severe and systematic errors, based on significant deviations from the fundamental principles of statistics, probability and sound judgment. This paper focuses on illustrating the existence of the anchoring, availability, and representativeness heuristics, originally described by Tversky & Kahneman in the early 1970’s. The anchoring heuristic is a tendency to focus on the initial information, estimate or perception (even random or irrelevant number) as a starting point. People tend to give disproportionate weight to the initial information they receive. The availability heuristic explains why highly imaginable or vivid information have a disproportionate effect on people’s decisions. The representativeness heuristic causes that people rely on highly specific scenarios, ignore base rates, draw conclusions based on small samples and neglect scope. Mentioned phenomena are illustrated and supported by evidence based on the statistical analysis of the results of a questionnaire.


Acoustics ◽  
2020 ◽  
Vol 2 (1) ◽  
pp. 51-72
Author(s):  
Gaofeng Sha

This study extends the second-order attenuation (SOA) model for elastic waves in texture-free inhomogeneous cubic polycrystalline materials with equiaxed grains to textured polycrystals with ellipsoidal grains of arbitrary crystal symmetry. In term of this work, one can predict both the scattering-induced attenuation and phase velocity from Rayleigh region (wavelength >> scatter size) to geometric region (wavelength << scatter size) for an arbitrary incident wave mode (quasi-longitudinal, quasi-transverse fast or quasi-transverse slow mode) in a textured polycrystal and examine the impact of crystallographic texture on attenuation and phase velocity dispersion in the whole frequency range. The predicted attenuation results of this work also agree well with the literature on a textured stainless steel polycrystal. Furthermore, an analytical expression for quasi-static phase velocity at an arbitrary wave propagation direction in a textured polycrystal is derived from the SOA model, which can provide an alternative homogenization method for textured polycrystals based on scattering theory. Computational results using triclinic titanium polycrystals with Gaussian orientation distribution function (ODF) are also presented to demonstrate the texture effect on attenuation and phase velocity behaviors and evaluate the applicability and limitation of an existing analytical model based on the Born approximation for textured polycrystals. Finally, quasi-static phase velocities predicted by this work for a textured polycrystalline copper with generalized spherical harmonics form ODF are compared to available velocity bounds in the literature including Hashin–Shtrikman bounds, and a reasonable agreement is found between this work and the literature.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
S. K. El-Labany ◽  
W. F. El-Taibany ◽  
E. E. Behery ◽  
Rami Abd-Elbaki

Abstract The interaction (oblique collision) of two ion acoustic solitons (IASs) in a magnetized relativistic degenerate plasma with relativistic degenerate electrons and non-degenerate cold ions is studied. The extended Poincaré–Lighthill–Kuo (PLK) method is used to obtain two Korteweg deVries (KdV) wave equations that describe the interacting IASs, then the phase shifts due to interaction are calculated. We studied influence of the fluid number density on the interaction process, interacting solitons phase shifts and also phase velocities. The introduced model is valid for astrophysical objects with high density matter such as white dwarfs, neutron stars, degenerate electrons gas in metals and laboratory degenerate plasma. An inverse proportionality between the phase shifts, phase velocity and the equilibrium electron fluid number density $$n_{eo}$$ n eo was established in the range $$10^{35}\,{\text {m}}^{-3}>n_{eo}>10^{38}\,{\text {m}}^{-3}$$ 10 35 m - 3 > n eo > 10 38 m - 3 . We found that the soliton waves get sharper (narrower) and higher with increasing the electrons fluid number density $$n_{eo}$$ n eo , and hence less spacial occupying. The phase shifts and the phase velocity remain approximately unchanged in the range of $$10^{35}\,{\text {m}}^{-3}<n_{eo}<10^{38}\,{\text {m}}^{-3}$$ 10 35 m - 3 < n eo < 10 38 m - 3 . The impact of the obliqueness angle $$\theta $$ θ on the soliton interaction process is also studied.


2017 ◽  
Vol 14 (5) ◽  
pp. 499-506 ◽  
Author(s):  
Marc Buyse ◽  
Pierre Squifflet ◽  
Elisabeth Coart ◽  
Emmanuel Quinaux ◽  
Cornelis JA Punt ◽  
...  

Background/aims Considerable human and financial resources are typically spent to ensure that data collected for clinical trials are free from errors. We investigated the impact of random and systematic errors on the outcome of randomized clinical trials. Methods We used individual patient data relating to response endpoints of interest in two published randomized clinical trials, one in ophthalmology and one in oncology. These randomized clinical trials enrolled 1186 patients with age-related macular degeneration and 736 patients with metastatic colorectal cancer. The ophthalmology trial tested the benefit of pegaptanib for the treatment of age-related macular degeneration and identified a statistically significant treatment benefit, whereas the oncology trial assessed the benefit of adding cetuximab to a regimen of capecitabine, oxaliplatin, and bevacizumab for the treatment of metastatic colorectal cancer and failed to identify a statistically significant treatment difference. We simulated trial results by adding errors that were independent of the treatment group (random errors) and errors that favored one of the treatment groups (systematic errors). We added such errors to the data for the response endpoint of interest for increasing proportions of randomly selected patients. Results Random errors added to up to 50% of the cases produced only slightly inflated variance in the estimated treatment effect of both trials, with no qualitative change in the p-value. In contrast, systematic errors produced bias even for very small proportions of patients with added errors. Conclusion A substantial amount of random errors is required before appreciable effects on the outcome of randomized clinical trials are noted. In contrast, even a small amount of systematic errors can severely bias the estimated treatment effects. Therefore, resources devoted to randomized clinical trials should be spent primarily on minimizing sources of systematic errors which can bias the analyses, rather than on random errors which result only in a small loss in power.


2020 ◽  
Vol 37 (9) ◽  
pp. 3407-3429
Author(s):  
Manisha Maity ◽  
Santimoy Kundu ◽  
Raju Kumhar ◽  
Shishir Gupta

Purpose This mathematical analysis has been accomplished for the purpose of understanding the propagation behaviour like phase velocity and attenuation of Love-type waves through visco-micropolar composite Earth’s structure. Design/methodology/approach The considered geometry of this problem involves a micropolar Voigt-type viscoelastic stratum imperfectly bonded to a heterogeneous Voigt-type viscoelastic substratum. With the aid of governing equations of motion of each individual medium and method of separation of variable, the components of micro-rotation and displacement have been obtained. Findings The boundary conditions of the presumed geometry at the free surface and at the interface, together with the obtained components of micro-rotation, displacement and mechanical stresses give rise to the determinant form of the dispersion relation. Moreover, some noteworthy cases have also been extrapolated in detail. Graphical interpretation irradiating the impact of viscoelasticity, micropolarity, heterogeneity and imperfectness on the phase velocity and attenuation of Love-type waves is the principal highlight of the present study. Practical implications In this study, the influence of the considered parameters such as micropolarity, viscoelasticity, heterogeneity, and imperfectness has been elucidated graphically on the phase velocity and attenuation of Love-type waves. It has been noticed from the graphs that with the rising magnitude of micropolarity and heterogeneity, the attenuation curves shift upwards, that is the loss of energy of these waves takes place in a rapid way. Hence, from the outcomes of the present analysis, it can be concluded that heterogeneous micropolar stratified media can serve as a helpful tool in increasing the attenuation or in other words, loss of energy of Love-type waves, thus reducing the devastating behaviour of these waves. Originality/value Till date, the mathematical modelling as well as vibrational analysis of Love-type waves in a viscoelastic substrate overloaded by visco-micropolar composite Earth’s structure with mechanical interfacial imperfection remain unattempted by researchers round the globe. The current analysis is an approach for studying the traversal traits of surface waves (here, Love-type waves) in a realistic stratified model of the Earth’s crust and may thus, serves as a dynamic paraphernalia in various domains like earthquake and geotechnical engineering; exploration geology and soil mechanics and many more, both in a conceptual as well as pragmatic manner.


1990 ◽  
Vol 141 ◽  
pp. 261-270 ◽  
Author(s):  
O. J. Sovers

Assessment of the impact of recent improvements in Deep Space Network (DSN) instrumentation, as well as of joint data analyses, provide a prognosis for the accuracy level to be expected in future realizations of an inertial radio reference frame. Intercontinental dual-frequency radio interferometric measurements during 68 sessions (including two recent sessions employing Mark III instrumentation) from 1978 to 1989 using NASA's DSN stations in California, Spain, and Australia give 8900 pairs of delay and delay rate observations. Analysis yields a catalog of positions of 200 extragalactic radio sources north of —45° declination. The resulting source position formal uncertainty distributions peak below 1 milliarcsecond, with three fourths being smaller than 2 mas. Comparison with independent measurements shows some evidence for systematic errors at the milliarcsecond level.


2019 ◽  
Vol 11 (13) ◽  
pp. 1606 ◽  
Author(s):  
Guanxu Chen ◽  
Yang Liu ◽  
Yanxiong Liu ◽  
Ziwen Tian ◽  
Jingnan Liu ◽  
...  

Global Navigation Satellite System––Acoustic (GNSS-A) positioning is the main technique for seafloor geodetic positioning. A transceiver lever arm offset and sound velocity bias in seawater are the main systematic errors of the GNSS-A positioning technique. Based on data from a sea trial in shallow water, this paper studies the functional model of GNSS-A positioning. The impact of the two systematic errors on seafloor positioning is analysed and corresponding processing methods are proposed. The results show that the offset in the lever arm measurement should be parameterised in the observation equation. Given the high correlation between the vertical lever arm offset and the vertical coordinate of the seafloor station, a sample search method was introduced to fix the vertical offset correction. If the calibration of the sound velocity profiler cannot be ensured, the correction parameter of the sound velocity bias should be solved. According to the refined functional model and corrections, the position of a seafloor station in shallow water can be determined with a precision of better than 1 cm.


Sign in / Sign up

Export Citation Format

Share Document