Distribution and diversity of glycocin biosynthesis gene clusters beyond Firmicutes

Author(s):  
Vaidhvi Singh ◽  
Alka Rao

Abstract Glycocins are the ribosomally synthesized glycosylated bacteriocins discovered and characterized in Firmicutes, only. These peptides have antimicrobial activity against several pathogenic bacteria, including Streptococcus pyogenes , methicillin-resistant Staphylococcus aureus and food-spoilage bacteria Listeria monocytogenes. Glycocins exhibit immunostimulatory properties and make a promising source of new antibiotics and food preservatives akin to Nisin. Biochemical studies of Sublancin, Glycocin F, Pallidocin and ASM1 prove that the nested disulfide-bonds are essential for their bioactivities. Using in silico approach of genome mining coupled with manual curation, here we identify 220 new putative glycocin biosynthesis gene clusters (PGBCs) spread across 153 bacterial species belonging to seven different bacterial phyla. Based on gene composition, we have grouped these PGBCs into five distinct conserved cluster Types I–V. All experimentally identified glycocins belong to Type I PGBCs. From protein sequence based phylograms, tanglegrams, global similarity heat-maps and cumulative mutual information analysis, it appears that glycocins may have originated from closely related bacteriocins, whereas recruitment of cognate glycosyltransferases (GTs) might be an independent event. Analysis further suggests that GTs may have coevolved with glycocins in cluster-specific manner to define distinctive donor specificities of GTs or to contribute to glycocin diversity across these clusters. We further identify 162 hitherto unreported PGBCs wherein the corresponding product glycocins have three or less than three cysteines. Secondary structure predictions suggest that these putative glycocins may not form di-nested disulfide-bonds. Therefore, production of such glycocins in heterologous host Escherichia coli is feasible and may provide novel antimicrobial spectrum and or mechanism of action for varied applications.

2012 ◽  
Vol 78 (10) ◽  
pp. 3744-3752 ◽  
Author(s):  
Boojala Vijay B. Reddy ◽  
Dimitris Kallifidas ◽  
Jeffrey H. Kim ◽  
Zachary Charlop-Powers ◽  
Zhiyang Feng ◽  
...  

ABSTRACTThe number of bacterial species estimated to exist on Earth has increased dramatically in recent years. This newly recognized species diversity has raised the possibility that bacterial natural product biosynthetic diversity has also been significantly underestimated by previous culture-based studies. Here, we compare 454-pyrosequenced nonribosomal peptide adenylation domain, type I polyketide ketosynthase domain, and type II polyketide ketosynthase alpha gene fragments amplified from cosmid libraries constructed using DNA isolated from three different arid soils. While 16S rRNA gene sequence analysis indicates these cloned metagenomes contain DNA from similar distributions of major bacterial phyla, we found that they contain almost completely distinct collections of secondary metabolite biosynthetic gene sequences. When grouped at 85% identity, only 1.5% of the adenylation domain, 1.2% of the ketosynthase, and 9.3% of the ketosynthase alpha sequence clusters contained sequences from all three metagenomes. Although there is unlikely to be a simple correlation between biosynthetic gene sequence diversity and the diversity of metabolites encoded by the gene clusters in which these genes reside, our analysis further suggests that sequences in one soil metagenome are so distantly related to sequences in another metagenome that they are, in many cases, likely to arise from functionally distinct gene clusters. The marked differences observed among collections of biosynthetic genes found in even ecologically similar environments suggest that prokaryotic natural product biosynthesis diversity is, like bacterial species diversity, potentially much larger than appreciated from culture-based studies.


2018 ◽  
Author(s):  
Chun-Hui Gao ◽  
Peng Cai ◽  
Zhunjie Li ◽  
Yichao Wu ◽  
Qiaoyun Huang

AbstractBacterial natural products (NPs) are considered to be a promising source of drug discovery. However, the biosynthesis gene clusters (BGCs) of NP are not often expressed, making it difficult to identify them. Recently, the study of biofilm community showed bacteria may gain competitive advantages by the secretion of antibiotics, implying a possible way to screen antibiotic by evaluating the social behavior of bacteria. In this study, we have described an efficient workflow for novel antibiotic discovery by employing the bacterial social interaction strategy with biofilm cultivation, co-culture, transcriptomic and genomic methods. We showed that a biofilm dominant species, i.e. Pseudomonas sp. G7, which was isolated from cultivated soil biofilm community, was highly competitive in four-species biofilm communities, as the synergistic combinations preferred to exclude this strain while the antagonistic combinations did not. Through the analysis of transcriptomic changes in four-species co-culture and the complete genome of Pseudomonas sp. G7, we finally discovered two novel non-ribosomal polypeptide synthetic (NRPS) BGCs, whose products were predicted to have seven and six amino acid components, respectively. Furthermore, we provide evidence showing that only when Pseudomonas sp. G7 was co-cultivated with at least two or three other bacterial species can these BGC genes be induced, suggesting that the co-culture of the soil biofilm isolates is critical to the discovery of novel antibiotics. As a conclusion, we set a model of applying microbial interaction to the discovery of new antibiotics.


2004 ◽  
Vol 70 (9) ◽  
pp. 5628-5643 ◽  
Author(s):  
J.-C. Ogier ◽  
V. Lafarge ◽  
V. Girard ◽  
A. Rault ◽  
V. Maladen ◽  
...  

ABSTRACT Numerous microorganisms, including bacteria, yeasts, and molds, constitute the complex ecosystem present in milk and fermented dairy products. Our aim was to describe the bacterial ecosystem of various cheeses that differ by production technology and therefore by their bacterial content. For this purpose, we developed a rapid, semisystematic approach based on genetic profiling by temporal temperature gradient electrophoresis (TTGE) for bacteria with low-G+C-content genomes and denaturing gradient gel electrophoresis (DGGE) for those with medium- and high-G+C-content genomes. Bacteria in the unknown ecosystems were assigned an identity by comparison with a comprehensive bacterial reference database of ∼150 species that included useful dairy microorganisms (lactic acid bacteria), spoilage bacteria (e.g., Pseudomonas and Enterobacteriaceae), and pathogenic bacteria (e.g., Listeria monocytogenes and Staphylococcus aureus). Our analyses provide a high resolution of bacteria comprising the ecosystems of different commercial cheeses and identify species that could not be discerned by conventional methods; at least two species, belonging to the Halomonas and Pseudoalteromonas genera, are identified for the first time in a dairy ecosystem. Our analyses also reveal a surprising difference in ecosystems of the cheese surface versus those of the interior; the aerobic surface bacteria are generally G+C rich and represent diverse species, while the cheese interior comprises fewer species that are generally low in G+C content. TTGE and DGGE have proven here to be powerful methods to rapidly identify a broad range of bacterial species within dairy products.


2017 ◽  
Vol 114 (11) ◽  
pp. 2892-2897 ◽  
Author(s):  
Lindsey S. Marmont ◽  
Jacquelyn D. Rich ◽  
John C. Whitney ◽  
Gregory B. Whitfield ◽  
Henrik Almblad ◽  
...  

Secreted polysaccharides are important functional and structural components of bacterial biofilms. The opportunistic pathogenPseudomonas aeruginosaproduces the cationic exopolysaccharide Pel, which protects bacteria from aminoglycoside antibiotics and contributes to biofilm architecture through ionic interactions with extracellular DNA. A bioinformatics analysis of genome databases suggests that gene clusters for Pel biosynthesis are present in >125 bacterial species, yet little is known about how this biofilm exopolysaccharide is synthesized and exported from the cell. In this work, we characterize PelC, an outer membrane lipoprotein essential for Pel production. Crystal structures of PelC fromGeobacter metallireducensandParaburkholderia phytofirmanscoupled with structure-guided disulfide cross-linking inP. aeruginosasuggest that PelC assembles into a 12- subunit ring-shaped oligomer. In this arrangement, an aromatic belt in proximity to its lipidation site positions the highly electronegative surface of PelC toward the periplasm. PelC is structurally similar to theEscherichia coliamyloid exporter CsgG; however, unlike CsgG, PelC does not possess membrane-spanning segments required for polymer export across the outer membrane. We show that the multidomain protein PelB with a predicted C-terminal β-barrel porin localizes to the outer membrane, and propose that PelC functions as an electronegative funnel to guide the positively charged Pel polysaccharide toward an exit channel formed by PelB. Together, our findings provide insight into the unique molecular architecture and export mechanism of the Pel apparatus, a widespread exopolysaccharide secretion system found in environmental and pathogenic bacteria.


Foods ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1895
Author(s):  
Joshua Hadi ◽  
Shuyan Wu ◽  
Gale Brightwell

Blue light primarily exhibits antimicrobial activity through the activation of endogenous photosensitizers, which leads to the formation of reactive oxygen species that attack components of bacterial cells. Current data show that blue light is innocuous on the skin, but may inflict photo-damage to the eyes. Laboratory measurements indicate that antimicrobial blue light has minimal effects on the sensorial and nutritional properties of foods, although future research using human panels is required to ascertain these findings. Food properties also affect the efficacy of antimicrobial blue light, with attenuation or enhancement of the bactericidal activity observed in the presence of absorptive materials (for example, proteins on meats) or photosensitizers (for example, riboflavin in milk), respectively. Blue light can also be coupled with other treatments, such as polyphenols, essential oils and organic acids. While complete resistance to blue light has not been reported, isolated evidence suggests that bacterial tolerance to blue light may occur over time, especially through gene mutations, although at a slower rate than antibiotic resistance. Future studies can aim at characterizing the amount and type of intracellular photosensitizers across bacterial species and at assessing the oxygen-independent mechanism of blue light—for example, the inactivation of spoilage bacteria in vacuum-packed meats.


Author(s):  
Nilushi Indika Bamunu Arachchige ◽  
Fazlurrahman Khan ◽  
Young-Mog Kim

Background: The treatment of infection caused by pathogenic bacteria becomes one of the serious concerns globally. The failure in the treatment was found due to the exhibition of multiple resistance mechanisms against the antimicrobial agents. Emergence of resistant bacterial species has also been observed due to prolong treatment using conventional antibiotics. To combat these problems, several alternative strategies have been employed using biological and chemically synthesized compounds as antibacterial agents. Marine organisms considered as one of the potential sources for the isolation of bioactive compounds due to the easily available, cost-effective, and eco-friendly. Methods: The online search methodology was adapted for the collection of information related to the antimicrobial properties of marine-derived compounds. These compound has been isolated and purified by different purification techniques, and their structure also characterized. Furthermore, the antibacterial activities have been reported by using broth microdilution as well as disc diffusion assays. Results: The present review paper describes the antimicrobial effect of diverse secondary metabolites which are isolated and purified from the different marine organisms. The structural elucidation of each secondary metabolite has also been done in the present paper, which will help for the in silico designing of the novel and potent antimicrobial compounds. Conclusion: A thorough literature search has been made and summarizes the list of antimicrobial compounds that are isolated from both prokaryotic and eukaryotic marine organisms. The information obtained from the present paper will be helpful for the application of marine compounds as antimicrobial agents against different antibiotic-resistant human pathogenic bacteria.


2021 ◽  
Vol 9 (3) ◽  
pp. 509
Author(s):  
Amanda Carroll-Portillo ◽  
Henry C. Lin

Conventional phage therapy using bacteriophages (phages) for specific targeting of pathogenic bacteria is not always useful as a therapeutic for gastrointestinal (GI) dysfunction. Complex dysbiotic GI disorders such as small intestinal bowel overgrowth (SIBO), ulcerative colitis (UC), or Crohn’s disease (CD) are even more difficult to treat as these conditions have shifts in multiple populations of bacteria within the microbiome. Such community-level structural changes in the gut microbiota may require an alternative to conventional phage therapy such as fecal virome transfer or a phage cocktail capable of targeting multiple bacterial species. Additionally, manipulation of the GI microenvironment may enhance beneficial bacteria–phage interactions during treatment. Mucin, produced along the entire length of the GI tract to protect the underlying mucosa, is a prominent contributor to the GI microenvironment and may facilitate bacteria–phage interactions in multiple ways, potentially serving as an adjunct during phage therapy. In this review, we will describe what is known about the role of mucin within the GI tract and how its facilitation of bacteria–phage interactions should be considered in any effort directed at optimizing effectiveness of a phage therapy for gastrointestinal dysbiosis.


Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 809
Author(s):  
Sen Wang ◽  
Wanyu Liu ◽  
Jun Li ◽  
Haotian Sun ◽  
Yali Qian ◽  
...  

Microorganisms existing in airborne fine particulate matter (PM2.5) have key implications in biogeochemical cycling and human health. In this study, PM2.5 samples, collected in the typical basin cities of Xi’an and Linfen, China, were analyzed through high-throughput sequencing to understand microbial seasonal variation characteristics and ecological functions. For bacteria, the highest richness and diversity were identified in autumn. The bacterial phyla were dominated by Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes. Metabolism was the most abundant pathway, with the highest relative abundance found in autumn. Pathogenic bacteria (Pseudomonas, Acinetobacter, Serratia, and Delftia) were positively correlated with most disease-related pathways. Besides, C cycling dominated in spring and summer, while N cycling dominated in autumn and winter. The relative abundance of S cycling was highest during winter in Linfen. For fungi, the highest richness was found in summer. Basidiomycota and Ascomycota mainly constituted the fungal phyla. Moreover, temperature (T) and sulfur dioxide (SO2) in Xi’an, and T, SO2, and nitrogen dioxide (NO2) in Linfen were the key factors affecting microbial community structures, which were associated with different pollution characteristics in Xi’an and Linfen. Overall, these results provide an important reference for the research into airborne microbial seasonal variations, along with their ecological functions and health impacts.


Toxins ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 19 ◽  
Author(s):  
Maria B. Nowakowska ◽  
François P. Douillard ◽  
Miia Lindström

The botulinum neurotoxin (BoNT) has been extensively researched over the years in regard to its structure, mode of action, and applications. Nevertheless, the biological roles of four proteins encoded from a number of BoNT gene clusters, i.e., OrfX1-3 and P47, are unknown. Here, we investigated the diversity of orfX-p47 gene clusters using in silico analytical tools. We show that the orfX-p47 cluster was not only present in the genomes of BoNT-producing bacteria but also in a substantially wider range of bacterial species across the bacterial phylogenetic tree. Remarkably, the orfX-p47 cluster was consistently located in proximity to genes coding for various toxins, suggesting that OrfX1-3 and P47 may have a conserved function related to toxinogenesis and/or pathogenesis, regardless of the toxin produced by the bacterium. Our work also led to the identification of a putative novel BoNT-like toxin gene cluster in a Bacillus isolate. This gene cluster shares striking similarities to the BoNT cluster, encoding a bont/ntnh-like gene and orfX-p47, but also differs from it markedly, displaying additional genes putatively encoding the components of a polymorphic ABC toxin complex. These findings provide novel insights into the biological roles of OrfX1, OrfX2, OrfX3, and P47 in toxinogenesis and pathogenesis of BoNT-producing and non-producing bacteria.


Pathogens ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 396
Author(s):  
Ewa Sajnaga ◽  
Marcin Skowronek ◽  
Agnieszka Kalwasińska ◽  
Waldemar Kazimierczak ◽  
Karolina Ferenc ◽  
...  

This study focused on the potential relationships between midgut microbiota of the common cockchafer Melolontha melolontha larvae and their resistance to entomopathogenic nematodes (EPN) infection. We investigated the bacterial community associated with control and unsusceptible EPN-exposed insects through nanopore sequencing of the 16S rRNA gene. Firmicutes, Proteobacteria, Actinobacteria, and Bacteroidetes were the most abundant bacterial phyla within the complex and variable midgut microbiota of the wild M. melolontha larvae. The core microbiota was found to include 82 genera, which accounted for 3.4% of the total number of identified genera. The EPN-resistant larvae differed significantly from the control ones in the abundance of many genera belonging to the Actinomycetales, Rhizobiales, and Clostridiales orders. Additionally, the analysis of the microbiome networks revealed different sets of keystone midgut bacterial genera between these two groups of insects, indicating differences in the mutual interactions between bacteria. Finally, we detected Xenorhabdus and Photorhabdus as gut residents and various bacterial species exhibiting antagonistic activity against these entomopathogens. This study paves the way to further research aimed at unravelling the role of the host gut microbiota on the output of EPN infection, which may contribute to enhancement of the efficiency of nematodes used in eco-friendly pest management.


Sign in / Sign up

Export Citation Format

Share Document