scholarly journals Genomic dissection of 43 serum urate-associated loci provides multiple insights into molecular mechanisms of urate control

2020 ◽  
Vol 29 (6) ◽  
pp. 923-943 ◽  
Author(s):  
James Boocock ◽  
Megan Leask ◽  
Yukinori Okada ◽  
Hirotaka Matsuo ◽  
Yusuke Kawamura ◽  
...  

Abstract High serum urate is a prerequisite for gout and associated with metabolic disease. Genome-wide association studies (GWAS) have reported dozens of loci associated with serum urate control; however, there has been little progress in understanding the molecular basis of the associated loci. Here, we employed trans-ancestral meta-analysis using data from European and East Asian populations to identify 10 new loci for serum urate levels. Genome-wide colocalization with cis-expression quantitative trait loci (eQTL) identified a further five new candidate loci. By cis- and trans-eQTL colocalization analysis, we identified 34 and 20 genes, respectively, where the causal eQTL variant has a high likelihood that it is shared with the serum urate-associated locus. One new locus identified was SLC22A9 that encodes organic anion transporter 7 (OAT7). We demonstrate that OAT7 is a very weak urate-butyrate exchanger. Newly implicated genes identified in the eQTL analysis include those encoding proteins that make up the dystrophin complex, a scaffold for signaling proteins and transporters at the cell membrane; MLXIP that, with the previously identified MLXIPL, is a transcription factor that may regulate serum urate via the pentose–phosphate pathway and MRPS7 and IDH2 that encode proteins necessary for mitochondrial function. Functional fine mapping identified six loci (RREB1, INHBC, HLF, UBE2Q2, SFMBT1 and HNF4G) with colocalized eQTL containing putative causal SNPs. This systematic analysis of serum urate GWAS loci identified candidate causal genes at 24 loci and a network of previously unidentified genes likely involved in control of serum urate levels, further illuminating the molecular mechanisms of urate control.

2019 ◽  
Author(s):  
James Boocock ◽  
Megan Leask ◽  
Yukinori Okada ◽  
Hirotaka Matsuo ◽  
Yusuke Kawamura ◽  
...  

AbstractSerum urate is the end-product of purine metabolism. Elevated serum urate is causal of gout and a predictor of renal disease, cardiovascular disease and other metabolic conditions. Genome-wide association studies (GWAS) have reported dozens of loci associated with serum urate control, however there has been little progress in understanding the molecular basis of the associated loci. Here we employed trans-ancestral meta-analysis using data from European and East Asian populations to identify ten new loci for serum urate levels. Genome-wide colocalization with cis-expression quantitative trait loci (eQTL) identified a further five new loci. By cis- and trans-eQTL colocalization analysis we identified 24 and 20 genes respectively where the causal eQTL variant has a high likelihood that it is shared with the serum urate-associated locus. One new locus identified was SLC22A9 that encodes organic anion transporter 7 (OAT7). We demonstrate that OAT7 is a very weak urate-butyrate exchanger. Newly implicated genes identified in the eQTL analysis include those encoding proteins that make up the dystrophin complex, a scaffold for signaling proteins and transporters at the cell membrane; MLXIP that, with the previously identified MLXIPL, is a transcription factor that may regulate serum urate via the pentose-phosphate pathway; and MRPS7 and IDH2 that encode proteins necessary for mitochondrial function. Trans-ancestral functional fine-mapping identified six loci (RREB1, INHBC, HLF, UBE2Q2, SFMBT1, HNF4G) with colocalized eQTL that contained putative causal SNPs (posterior probability of causality > 0.8). This systematic analysis of serum urate GWAS loci has identified candidate causal genes at 19 loci and a network of previously unidentified genes likely involved in control of serum urate levels, further illuminating the molecular mechanisms of urate control.Author SummaryHigh serum urate is a prerequisite for gout and a risk factor for metabolic disease. Previous GWAS have identified numerous loci that are associated with serum urate control, however, only a small handful of these loci have known molecular consequences. The majority of loci are within the non-coding regions of the genome and therefore it is difficult to ascertain how these variants might influence serum urate levels without tangible links to gene expression and / or protein function. We have applied a novel bioinformatic pipeline where we combined population-specific GWAS data with gene expression and genome connectivity information to identify putative causal genes for serum urate associated loci. Overall, we identified 15 novel serum urate loci and show that these loci along with previously identified loci are linked to the expression of 44 genes. We show that some of the variants within these loci have strong predicted regulatory function which can be further tested in functional analyses. This study expands on previous GWAS by identifying further loci implicated in serum urate control and new causal mechanisms supported by gene expression changes.


2019 ◽  
Vol 25 (42) ◽  
pp. 5835-5846 ◽  
Author(s):  
Anna Licata ◽  
Antonina Giammanco ◽  
Maria Giovanna Minissale ◽  
Salvatore Pagano ◽  
Salvatore Petta ◽  
...  

Adverse drug reactions (ADRs) represent an important cause of morbidity and mortality worldwide. Statins are a class of drugs whose main adverse effects are drug-induced liver injury (DILI) and myopathy. Some of these may be predictable, due to their pharmacokinetic and pharmacodynamic properties, while others, unfortunately, are idiosyncratic. Genetic factors may also influence patient susceptibility to DILI and myopathy in the case of statins. This review will first discuss the role of statins in cardiovascular disease treatment and prevention and the underlying mechanisms of action. Furthermore, to explore the susceptibility of statin-induced adverse events such as myopathy and hepatotoxicity, it will then focus on the recent Genome-Wide Association Studies (GWAS) concerning the transporter genes, Cytochrome P450 (CYP), organic anion-transporting polypeptide (OATP) and ABCB1 and ABCC1, which seem to play a role in the development of clinically relevant adverse events. Finally, we appraise the evidence for and against the use of statins in metabolic syndrome and in HCV-infected patients, in terms of their safety and efficacy in cardiovascular events.


2018 ◽  
Vol 94 (1) ◽  
pp. 689-699 ◽  
Author(s):  
Ling Zou ◽  
Adrian Stecula ◽  
Anshul Gupta ◽  
Bhagwat Prasad ◽  
Huan-Chieh Chien ◽  
...  

2008 ◽  
Vol 295 (1) ◽  
pp. F247-F252 ◽  
Author(s):  
Jiarong Chen ◽  
Tomohiro Terada ◽  
Ken Ogasawara ◽  
Toshiya Katsura ◽  
Ken-ichi Inui

During cholestasis, bile acids are mainly excreted into the urine, but adaptive renal responses to cholestasis, especially molecular mechanisms for renal secretion of bile acids, have not been well understood. Organic anion transporters (OAT1 and OAT3) are responsible for membrane transport of anionic compounds at the renal basolateral membranes. In the present study, we investigated the pathophysiological roles of OAT1 and OAT3 in terms of renal handling of bile acids. The Eisai hyperbilirubinemic rats (EHBR), mutant rats without multidrug resistance-associated protein 2, showed higher serum and urinary concentrations of bile acids, compared with Sprague-Dawley (SD) rats (wild type). The protein expression level of rat OAT3 was significantly increased in EHBR compared with SD rats, whereas the expression of rat OAT1 was unchanged. The transport activities of rat and human OAT3, but not OAT1, were markedly inhibited by various bile acids such as chenodeoxycholic acid and cholic acid. Cholic acid, glycocholic acid, and taurocholic acid, which mainly increased during cholestasis, are transported by OAT3. The plasma concentration of β-lactam antibiotic cefotiam, a specific substrate for OAT3, was more increased in EHBR than in SD rats despite upregulation of OAT3 protein. This may be due to the competitive inhibition of cefotiam transport by bile acids via OAT3. In conclusion, the present study clearly demonstrated that OAT3 is responsible for renal secretion of bile acids during cholestasis and that the pharmacokinetic profile of OAT3 substrates may be affected by cholestasis.


2019 ◽  
Vol 317 (4) ◽  
pp. F805-F814
Author(s):  
Jia Yin ◽  
David J. Wagner ◽  
Bhagwat Prasad ◽  
Nina Isoherranen ◽  
Kenneth E. Thummel ◽  
...  

Hydrochlorothiazide (HCTZ) is the most widely used thiazide diuretic for the treatment of hypertension either alone or in combination with other antihypertensives. HCTZ is mainly cleared by the kidney via tubular secretion, but the underlying molecular mechanisms are unclear. Using cells stably expressing major renal organic anion and cation transporters [human organic anion transporter 1 (hOAT1), human organic anion transporter 3 (hOAT3), human organic cation transporter 2 (hOCT2), human multidrug and toxin extrusion 1 (hMATE1), and human multidrug and toxin extrusion 2-K (hMATE2-K)], we found that HCTZ interacted with both organic cation and anion transporters. Uptake experiments further showed that HCTZ is transported by hOAT1, hOAT3, hOCT2, and hMATE2-K but not by hMATE1. Detailed kinetic analysis coupled with quantification of membrane transporter proteins by targeted proteomics revealed that HCTZ is an excellent substrate for hOAT1 and hOAT3. The apparent affinities ( Km) for hOAT1 and hOAT3 were 112 ± 8 and 134 ± 13 μM, respectively, and the calculated turnover numbers ( kcat) were 2.48 and 0.79 s−1, respectively. On the other hand, hOCT2 and hMATE2-K showed much lower affinity for HCTZ. The calculated transport efficiency ( kcat/ Km) at the single transporter level followed the rank order of hOAT1> hOAT3 > hOCT2 and hMATE2-K, suggesting a major role of organic anion transporters in tubular secretion of HCTZ. In vitro inhibition experiments further suggested that HCTZ is not a clinically relevant inhibitor for hOAT1 or hOAT3. However, strong in vivo inhibitors of hOAT1/3 may alter renal secretion of HCTZ. Together, our study elucidated the molecular mechanisms underlying renal handling of HCTZ and revealed potential pathways involved in the disposition and drug-drug interactions for this important antihypertensive drug in the kidney.


2019 ◽  
Vol 47 (1) ◽  
pp. E10 ◽  
Author(s):  
Nardin Samuel ◽  
Ivan Radovanovic

OBJECTIVEDespite the prevalence and impact of intracranial aneurysms (IAs), the molecular basis of their pathogenesis remains largely unknown. Moreover, there is a dearth of clinically validated biomarkers to efficiently screen patients with IAs and prognosticate risk for rupture. The aim of this study was to survey the literature to systematically identify the spectrum of genetic aberrations that have been identified in IA formation and risk of rupture.METHODSA literature search was performed using the Medical Subject Headings (MeSH) system of databases including PubMed, EMBASE, and Google Scholar. Relevant studies that reported on genetic analyses of IAs, rupture risk, and long-term outcomes were included in the qualitative analysis.RESULTSA total of 114 studies were reviewed and 65 were included in the qualitative synthesis. There are several well-established mendelian syndromes that confer risk to IAs, with variable frequency. Linkage analyses, genome-wide association studies, candidate gene studies, and exome sequencing identify several recurrent polymorphic variants at candidate loci, and genes associated with the risk of aneurysm formation and rupture, including ANRIL (CDKN2B-AS1, 9p21), ARGHEF17 (11q13), ELN (7q11), SERPINA3 (14q32), and SOX17 (8q11). In addition, polymorphisms in eNOS/NOS3 (7q36) may serve as predictive markers for outcomes following intracranial aneurysm rupture. Genetic aberrations identified to date converge on posited molecular mechanisms involved in vascular remodeling, with strong implications for an associated immune-mediated inflammatory response.CONCLUSIONSComprehensive studies of IA formation and rupture have identified candidate risk variants and loci; however, further genome-wide analyses are needed to identify high-confidence genetic aberrations. The literature supports a role for several risk loci in aneurysm formation and rupture with putative candidate genes. A thorough understanding of the genetic basis governing risk of IA development and the resultant aneurysmal subarachnoid hemorrhage may aid in screening, clinical management, and risk stratification of these patients, and it may also enable identification of putative mechanisms for future drug development.


2020 ◽  
Vol 21 (12) ◽  
pp. 4269 ◽  
Author(s):  
Victoria L. Halperin Kuhns ◽  
Owen M. Woodward

Hyperuricemia, or elevated serum urate, causes urate kidney stones and gout and also increases the incidence of many other conditions including renal disease, cardiovascular disease, and metabolic syndrome. As we gain mechanistic insight into how urate contributes to human disease, a clear sex difference has emerged in the physiological regulation of urate homeostasis. This review summarizes our current understanding of urate as a disease risk factor and how being of the female sex appears protective. Further, we review the mechanisms of renal handling of urate and the significant contributions from powerful genome-wide association studies of serum urate. We also explore the role of sex in the regulation of specific renal urate transporters and the power of new animal models of hyperuricemia to inform on the role of sex and hyperuricemia in disease pathogenesis. Finally, we advocate the use of sex differences in urate handling as a potent tool in gaining a further understanding of physiological regulation of urate homeostasis and for presenting new avenues for treating the constellation of urate related pathologies.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2466-2466 ◽  
Author(s):  
Laura B. Ramsey ◽  
John C Panetta ◽  
Colton Smith ◽  
Wenjian Yang ◽  
Yiping Fan ◽  
...  

Abstract Abstract 2466 High-dose methotrexate (HDMTX) is an important element of chemotherapy for acute lymphoblastic leukemia (ALL) and other malignancies. Methotrexate clearance influences cure and toxicity in children with acute lymphoblastic leukemia (ALL). HDMTX schedules and doses vary widely among treatment protocols. The Children's Oncology Group (COG) tested the efficacy of 6 courses of 2 g/m2 over 4 hours versus 1 g/m2 over 24 hours (P9904 and P9905 protocols). Patients were assigned to one of four arms for consolidation: A, 24-hour methotrexate infusion (1 g/m2) and no delayed intensification (DI); B, 4-hour methotrexate infusion (2 g/m2) with no DI; C, 24-hour methotrexate infusion with DI; D, 4-hour methotrexate infusion with DI. We estimated methotrexate clearance for 1279 patients treated on these protocols, with two plasma MTX concentrations per course, using a Bayesian pharmacokinetic modeling approach. Germline genetic variation was assessed using the Affymetrix 6.0 array, and other single nucleotide polymorphisms (SNPs) were imputed based on 1000 Genomes reference data, yielding 5.2 million SNP genotypes evaluable per patient. Average MTX clearance was highly variable, with a median (range) of 164 (65–355) and 109 (49–290) ml/min/m2 for the 24-hour and 4-hour infusions, respectively. Methotrexate clearance was lower in older children (p = 7 × 10−7), girls (p = 2.7 × 10−4), and patients who received a delayed intensification phase during consolidation (p = 0.0022). Adjusting for age, gender, race, and treatment arm, a genome-wide analysis showed that methotrexate clearance was associated with polymorphisms in SLCO1B1(p = 2.1 × 10−11), a gene that encodes for an organic anion transporter that is known to transport methotrexate. This replicates our previous findings (Trevino et al, J Clin Oncol. 2009;27(35):5972-8) that polymorphisms in SLCO1B1 influence methotrexate clearance in ALL patients treated on St. Jude protocols with three different HDMTX schedules. In a combined meta-analysis including the 1279 COG patients and 699 St. Jude patients, and adjusting for age, gender, race, and treatment arm, the association of methotrexate clearance with SLCO1B1 SNP rs4149056 yields a p-value of 3.1 × 10−19 (Figure). Even after adjustment for the rs4149056 SNP, other polymorphisms in SLCO1B1 remained significantly related to methotrexate clearance, indicating that there are multiple variants in SLCO1B1 that can influence methotrexate clearance. Validation of the association of this gene with five different treatment regimens of methotrexate solidifies the robustness of this pharmacogenomic determinant of methotrexate clearance. Disclosures: No relevant conflicts of interest to declare.


2017 ◽  
Vol 242 (13) ◽  
pp. 1325-1334 ◽  
Author(s):  
Yizhou Zhu ◽  
Cagdas Tazearslan ◽  
Yousin Suh

Genome-wide association studies have shown that the far majority of disease-associated variants reside in the non-coding regions of the genome, suggesting that gene regulatory changes contribute to disease risk. To identify truly causal non-coding variants and their affected target genes remains challenging but is a critical step to translate the genetic associations to molecular mechanisms and ultimately clinical applications. Here we review genomic/epigenomic resources and in silico tools that can be used to identify causal non-coding variants and experimental strategies to validate their functionalities. Impact statement Most signals from genome-wide association studies (GWASs) map to the non-coding genome, and functional interpretation of these associations remained challenging. We reviewed recent progress in methodologies of studying the non-coding genome and argued that no single approach allows one to effectively identify the causal regulatory variants from GWAS results. By illustrating the advantages and limitations of each method, our review potentially provided a guideline for taking a combinatorial approach to accurately predict, prioritize, and eventually experimentally validate the causal variants.


Sign in / Sign up

Export Citation Format

Share Document