scholarly journals Implicit bias of encoded variables: frameworks for addressing structured bias in EHR–GWAS data

2020 ◽  
Vol 29 (R1) ◽  
pp. R33-R41
Author(s):  
Hillary R Dueñas ◽  
Carina Seah ◽  
Jessica S Johnson ◽  
Laura M Huckins

Abstract The ‘discovery’ stage of genome-wide association studies required amassing large, homogeneous cohorts. In order to attain clinically useful insights, we must now consider the presentation of disease within our clinics and, by extension, within our medical records. Large-scale use of electronic health record (EHR) data can help to understand phenotypes in a scalable manner, incorporating lifelong and whole-phenome context. However, extending analyses to incorporate EHR and biobank-based analyses will require careful consideration of phenotype definition. Judgements and clinical decisions that occur ‘outside’ the system inevitably contain some degree of bias and become encoded in EHR data. Any algorithmic approach to phenotypic characterization that assumes non-biased variables will generate compounded biased conclusions. Here, we discuss and illustrate potential biases inherent within EHR analyses, how these may be compounded across time and suggest frameworks for large-scale phenotypic analysis to minimize and uncover encoded bias.

2018 ◽  
Vol 35 (14) ◽  
pp. 2512-2514 ◽  
Author(s):  
Bongsong Kim ◽  
Xinbin Dai ◽  
Wenchao Zhang ◽  
Zhaohong Zhuang ◽  
Darlene L Sanchez ◽  
...  

Abstract Summary We present GWASpro, a high-performance web server for the analyses of large-scale genome-wide association studies (GWAS). GWASpro was developed to provide data analyses for large-scale molecular genetic data, coupled with complex replicated experimental designs such as found in plant science investigations and to overcome the steep learning curves of existing GWAS software tools. GWASpro supports building complex design matrices, by which complex experimental designs that may include replications, treatments, locations and times, can be accounted for in the linear mixed model. GWASpro is optimized to handle GWAS data that may consist of up to 10 million markers and 10 000 samples from replicable lines or hybrids. GWASpro provides an interface that significantly reduces the learning curve for new GWAS investigators. Availability and implementation GWASpro is freely available at https://bioinfo.noble.org/GWASPRO. Supplementary information Supplementary data are available at Bioinformatics online.


2012 ◽  
Vol 215 (1) ◽  
pp. 17-28 ◽  
Author(s):  
Georg Homuth ◽  
Alexander Teumer ◽  
Uwe Völker ◽  
Matthias Nauck

The metabolome, defined as the reflection of metabolic dynamics derived from parameters measured primarily in easily accessible body fluids such as serum, plasma, and urine, can be considered as the omics data pool that is closest to the phenotype because it integrates genetic influences as well as nongenetic factors. Metabolic traits can be related to genetic polymorphisms in genome-wide association studies, enabling the identification of underlying genetic factors, as well as to specific phenotypes, resulting in the identification of metabolome signatures primarily caused by nongenetic factors. Similarly, correlation of metabolome data with transcriptional or/and proteome profiles of blood cells also produces valuable data, by revealing associations between metabolic changes and mRNA and protein levels. In the last years, the progress in correlating genetic variation and metabolome profiles was most impressive. This review will therefore try to summarize the most important of these studies and give an outlook on future developments.


2018 ◽  
Author(s):  
Doug Speed ◽  
David J Balding

LD Score Regression (LDSC) has been widely applied to the results of genome-wide association studies. However, its estimates of SNP heritability are derived from an unrealistic model in which each SNP is expected to contribute equal heritability. As a consequence, LDSC tends to over-estimate confounding bias, under-estimate the total phenotypic variation explained by SNPs, and provide misleading estimates of the heritability enrichment of SNP categories. Therefore, we present SumHer, software for estimating SNP heritability from summary statistics using more realistic heritability models. After demonstrating its superiority over LDSC, we apply SumHer to the results of 24 large-scale association studies (average sample size 121 000). First we show that these studies have tended to substantially over-correct for confounding, and as a result the number of genome-wide significant loci has under-reported by about 20%. Next we estimate enrichment for 24 categories of SNPs defined by functional annotations. A previous study using LDSC reported that conserved regions were 13-fold enriched, and found a further twelve categories with above 2-fold enrichment. By contrast, our analysis using SumHer finds that conserved regions are only 1.6-fold (SD 0.06) enriched, and that no category has enrichment above 1.7-fold. SumHer provides an improved understanding of the genetic architecture of complex traits, which enables more efficient analysis of future genetic data.


Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2386
Author(s):  
Pierre-Olivier Hébert ◽  
Martin Laforest ◽  
Dong Xu ◽  
Marie Ciotola ◽  
Mélanie Cadieux ◽  
...  

Bacterial leaf spot of lettuce, caused by Xanthomonas hortorum pv. vitians, is an economically important disease worldwide. For instance, it caused around 4 million CAD in losses in only a few months during the winter of 1992 in Florida. Because only one pesticide is registered to control this disease in Canada, the development of lettuce cultivars tolerant to bacterial leaf spot remains the most promising approach to reduce the incidence and severity of the disease in lettuce fields. The lack of information about the genetic diversity of the pathogen, however, impairs breeding programs, especially when disease resistance is tested on newly developed lettuce germplasm lines. To evaluate the diversity of X. hortorum pv. vitians, a multilocus sequence analysis was performed on 694 isolates collected in Eastern Canada through the summers of 2014 to 2017 and two isolates in 1996 and 2007. All isolates tested were clustered into five phylogroups. Six pathotypes were identified following pathogenicity tests conducted in greenhouses, but when phylogroups were compared with pathotypes, no correlation could be drawn. However, in vitro production of xanthan and xanthomonadins was investigated, and isolates with higher production of xanthomonadins were generally causing less severe symptoms on the tolerant cultivar Little Gem. Whole-genome sequencing was undertaken for 95 isolates belonging to the pathotypes identified, and de novo assembly made with reads unmapped to the reference strain’s genome sequence resulted in 694 contigs ranging from 128 to 120,795 bp. Variant calling was performed prior to genome-wide association studies computed with single-nucleotide polymorphisms (SNPs), copy-number variants and gaps. Polymorphisms with significant p-values were only found on the cultivar Little Gem. Our results allowed molecular identification of isolates likely to cause bacterial leaf spot of lettuce, using two SNPs identified through genome-wide association study.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (1) ◽  
pp. e1009315
Author(s):  
Ardalan Naseri ◽  
Junjie Shi ◽  
Xihong Lin ◽  
Shaojie Zhang ◽  
Degui Zhi

Inference of relationships from whole-genome genetic data of a cohort is a crucial prerequisite for genome-wide association studies. Typically, relationships are inferred by computing the kinship coefficients (ϕ) and the genome-wide probability of zero IBD sharing (π0) among all pairs of individuals. Current leading methods are based on pairwise comparisons, which may not scale up to very large cohorts (e.g., sample size >1 million). Here, we propose an efficient relationship inference method, RAFFI. RAFFI leverages the efficient RaPID method to call IBD segments first, then estimate the ϕ and π0 from detected IBD segments. This inference is achieved by a data-driven approach that adjusts the estimation based on phasing quality and genotyping quality. Using simulations, we showed that RAFFI is robust against phasing/genotyping errors, admix events, and varying marker densities, and achieves higher accuracy compared to KING, the current leading method, especially for more distant relatives. When applied to the phased UK Biobank data with ~500K individuals, RAFFI is approximately 18 times faster than KING. We expect RAFFI will offer fast and accurate relatedness inference for even larger cohorts.


Author(s):  
Anne Hinks ◽  
Wendy Thomson

Juvenile rheumatic diseases are heterogeneous, complex genetic diseases; to date only juvenile idiopathic arthritis (JIA) has been extensively studied in terms of identifying genetic risk factors. The MHC region is a well-established risk factor but in the last few years candidate gene and large-scale genome-wide association studies have been utilized in the search for non-HLA risk factors. There are now 17 JIA susceptibility loci which reach the genome-wide significance threshold for association and a further 7 regions with evidence for association in more than one study. In addition, some subtype-specific associations are emerging. These risk loci now need to be investigated further using fine-mapping strategies and then appropriate functional studies to show how the variant alters the gene function. This knowledge will not only lead to a better understanding of disease pathogenesis for juvenile rheumatic diseases but may also aid in the classification of these heterogeneous diseases. It may identify new pathways for potential therapeutic targets and help in the prediction of disease outcome and response to treatment.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Dennis van der Meer ◽  
Oleksandr Frei ◽  
Tobias Kaufmann ◽  
Alexey A. Shadrin ◽  
Anna Devor ◽  
...  

Abstract Regional brain morphology has a complex genetic architecture, consisting of many common polymorphisms with small individual effects. This has proven challenging for genome-wide association studies (GWAS). Due to the distributed nature of genetic signal across brain regions, multivariate analysis of regional measures may enhance discovery of genetic variants. Current multivariate approaches to GWAS are ill-suited for complex, large-scale data of this kind. Here, we introduce the Multivariate Omnibus Statistical Test (MOSTest), with an efficient computational design enabling rapid and reliable inference, and apply it to 171 regional brain morphology measures from 26,502 UK Biobank participants. At the conventional genome-wide significance threshold of α = 5 × 10−8, MOSTest identifies 347 genomic loci associated with regional brain morphology, more than any previous study, improving upon the discovery of established GWAS approaches more than threefold. Our findings implicate more than 5% of all protein-coding genes and provide evidence for gene sets involved in neuron development and differentiation.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Darrell L. Ellsworth ◽  
Clesson E. Turner ◽  
Rachel E. Ellsworth

Triple negative breast cancer (TNBC), representing 10-15% of breast tumors diagnosed each year, is a clinically defined subtype of breast cancer associated with poor prognosis. The higher incidence of TNBC in certain populations such as young women and/or women of African ancestry and a unique pathological phenotype shared between TNBC and BRCA1-deficient tumors suggest that TNBC may be inherited through germline mutations. In this article, we describe genes and genetic elements, beyond BRCA1 and BRCA2, which have been associated with increased risk of TNBC. Multigene panel testing has identified high- and moderate-penetrance cancer predisposition genes associated with increased risk for TNBC. Development of large-scale genome-wide SNP assays coupled with genome-wide association studies (GWAS) has led to the discovery of low-penetrance TNBC-associated loci. Next-generation sequencing has identified variants in noncoding RNAs, viral integration sites, and genes in underexplored regions of the human genome that may contribute to the genetic underpinnings of TNBC. Advances in our understanding of the genetics of TNBC are driving improvements in risk assessment and patient management.


2020 ◽  
Vol 117 (21) ◽  
pp. 11608-11613 ◽  
Author(s):  
Marcelo Blatt ◽  
Alexander Gusev ◽  
Yuriy Polyakov ◽  
Shafi Goldwasser

Genome-wide association studies (GWASs) seek to identify genetic variants associated with a trait, and have been a powerful approach for understanding complex diseases. A critical challenge for GWASs has been the dependence on individual-level data that typically have strict privacy requirements, creating an urgent need for methods that preserve the individual-level privacy of participants. Here, we present a privacy-preserving framework based on several advances in homomorphic encryption and demonstrate that it can perform an accurate GWAS analysis for a real dataset of more than 25,000 individuals, keeping all individual data encrypted and requiring no user interactions. Our extrapolations show that it can evaluate GWASs of 100,000 individuals and 500,000 single-nucleotide polymorphisms (SNPs) in 5.6 h on a single server node (or in 11 min on 31 server nodes running in parallel). Our performance results are more than one order of magnitude faster than prior state-of-the-art results using secure multiparty computation, which requires continuous user interactions, with the accuracy of both solutions being similar. Our homomorphic encryption advances can also be applied to other domains where large-scale statistical analyses over encrypted data are needed.


Sign in / Sign up

Export Citation Format

Share Document