Genome-wide identification of cis DNA methylation quantitative trait loci in three Southeast Asian Populations

2021 ◽  
Author(s):  
Irfahan Kassam ◽  
Sili Tan ◽  
Fei Fei Gan ◽  
Woei-Yuh Saw ◽  
Linda Wei-Lin Tan ◽  
...  

Abstract DNA methylation (DNAm) is an epigenetic modification that acts to regulate gene transcription, is essential for cellular processes and plays an important role in complex traits and disease. Variation in DNAm levels is influenced by both genetic and environmental factors. Several studies have examined the extent to which common genetic variation influences DNAm (i.e. mQTLs), however, an improved understanding of mQTLs across diverse human populations is needed to increase their utility in integrative genomic studies in order to further our understanding of complex trait and disease biology. Here, we systematically examine cis-mQTLs in three Southeast Asian populations in the Singapore Integrative Omics (iOmics) Study, comprised of Chinese (n = 93), Indians (n = 83) and Malays (n = 78). A total of 24 851 cis-mQTL probes were associated with at least one SNP in meta- and ethnicity-specific analyses at a stringent significance level. These cis-mQTL probes show significant differences in local SNP heritability between the ethnicities, enrichment in functionally relevant regions using data from the Roadmap Epigenomics Mapping Consortium and are associated with nearby genes and complex traits due to pleiotropy. Importantly, DNAm prediction performance and the replication of cis-mQTLs both within iOmics and between two independent mQTL studies in European and Bangladeshi individuals is best when the genetic distance between the ethnicities is small, with differences in cis-mQTLs likely due to differences in allele frequency and linkage disequilibrium. This study highlights the importance of, and opportunities from, extending investigation of the genetic control of DNA methylation to Southeast Asian populations.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Adrienne Tin ◽  
Pascal Schlosser ◽  
Pamela R. Matias-Garcia ◽  
Chris H. L. Thio ◽  
Roby Joehanes ◽  
...  

AbstractElevated serum urate levels, a complex trait and major risk factor for incident gout, are correlated with cardiometabolic traits via incompletely understood mechanisms. DNA methylation in whole blood captures genetic and environmental influences and is assessed in transethnic meta-analysis of epigenome-wide association studies (EWAS) of serum urate (discovery, n = 12,474, replication, n = 5522). The 100 replicated, epigenome-wide significant (p < 1.1E–7) CpGs explain 11.6% of the serum urate variance. At SLC2A9, the serum urate locus with the largest effect in genome-wide association studies (GWAS), five CpGs are associated with SLC2A9 gene expression. Four CpGs at SLC2A9 have significant causal effects on serum urate levels and/or gout, and two of these partly mediate the effects of urate-associated GWAS variants. In other genes, including SLC7A11 and PHGDH, 17 urate-associated CpGs are associated with conditions defining metabolic syndrome, suggesting that these CpGs may represent a blood DNA methylation signature of cardiometabolic risk factors. This study demonstrates that EWAS can provide new insights into GWAS loci and the correlation of serum urate with other complex traits.


2019 ◽  
Author(s):  
Yang Wu ◽  
Ting Qi ◽  
Huanwei Wang ◽  
Futao Zhang ◽  
Zhili Zheng ◽  
...  

AbstractPromoter-anchored chromatin interactions (PAIs) play a pivotal role in transcriptional regulation. Current high-throughput technologies for detecting PAIs, such as promoter capture Hi-C, are not scalable to large cohorts. Here, we present an analytical approach that uses summary-level data from cohort-based DNA methylation (DNAm) quantitative trait locus (mQTL) studies to predict PAIs. Using mQTL data from human peripheral blood (n=1,980), we predicted 34,797 PAIs which showed strong overlap with the chromatin contacts identified by previous experimental assays. The promoter-interacting DNAm sites were enriched in enhancers or near expression QTLs. Genes whose promoters were involved in PAIs were more actively expressed, and gene pairs with promoter-promoter interactions were enriched for co-expression. Integration of the predicted PAIs with GWAS data highlighted interactions among 601 DNAm sites associated with 15 complex traits. This study demonstrates the use of mQTL data to predict PAIs and provides insights into the role of PAIs in complex trait variation.


2019 ◽  
Vol 374 (1780) ◽  
pp. 20180434 ◽  
Author(s):  
Goki Ly ◽  
Romain Laurent ◽  
Sophie Lafosse ◽  
Chou Monidarin ◽  
Gérard Diffloth ◽  
...  

In matrilineal populations, the descent group affiliation is transmitted by women whereas the socio-political power frequently remains in the hands of men. This situation, named the ‘matrilineal puzzle’, is expected to promote local endogamy as a coping mechanism allowing men to maintain their decision-making power over their natal descent group. In this paper, we revisit this ‘matrilineal puzzle’ from a population genetics' point of view. Indeed, such tendency for local endogamy in matrilineal populations is expected to increase their genetic inbreeding and generate isolation-by-distance patterns between villages. To test this hypothesis, we collected ethno-demographic data for 3261 couples and high-density genetic data for 675 individuals from 11 Southeast Asian populations with a wide range of social organizations: matrilineal and matrilocal populations (M), patrilineal and patrilocal populations (P) or cognatic populations with predominant matrilocal residence (C). We observed that M and C populations have higher levels of village endogamy than P populations, and that such higher village endogamy leads to higher genetic inbreeding. M populations also exhibit isolation-by-distance patterns between villages. We interpret such genetic patterns as the signature of the ‘matrilineal puzzle’. Notably, our results suggest that any form of matrilocal marriage (whatever the descent rule is) increases village endogamy. These findings suggest that male dominance, when combined with matrilocality, constrains inter-village migrations, and constitutes an underexplored cultural process shaping genetic patterns in human populations. This article is part of the theme issue ‘The evolution of female-biased kinship in humans and other mammals’.


2015 ◽  
Author(s):  
Oana Carja ◽  
Julia L MacIsaac ◽  
Sarah M Mah ◽  
Brenna M Henn ◽  
Michael S Kobor ◽  
...  

DNA methylation is an epigenetic modification, influenced by both genetic and environmental variation, that can affect transcription and many organismal phenotypes. Although patterns of DNA methylation have been shown to differ between human populations, it remains to be determined whether epigenetic diversity mirrors the patterns observed for DNA polymorphisms or gene expression levels. We measured DNA methylation at 480,000 sites in 34 individuals from five diverse human populations in the Human Genome Diversity Panel, and analyzed these together with single nucleotide polymorphisms (SNPs) and gene expression data. We found greater population-specificity of DNA methylation than of mRNA levels, which may be driven by the greater genetic control of methylation. This study provides insights into gene expression and its epigenetic regulation across populations and offers a deeper understanding of worldwide patterns of epigenetic diversity in humans.


2018 ◽  
Author(s):  
Xin Huang ◽  
Yungang He ◽  
Sijia Wang ◽  
Li Jin

AbstractHuman pigmentation is a highly diverse and complex trait among populations, and has drawn particular attention from both academic and non-academic investigators for thousands of years. Previous studies detected selection signals in several human pigmentation genes, but few studies have integrated contribution from multiple genes to the evolution of human pigmentation. Moreover, none has quantified selective pressures on human pigmentation over epochs and between populations. Here, we dissect dynamics and differences of selective pressures during different periods and between distinct populations with new approaches. We propose a new model with multiple populations to estimate historical selective pressures by summarizing selective pressures on multiple genes. We use genotype data of 19 genes associated with human pigmentation from 17 datasets, and obtain data for 2346 individuals of six representative population groups from worldwide. Our results quantify selective pressures on light pigmentation not only in modern Europeans (0.0249/generation) but also in proto-Eurasians (0.00665/generation). Our results also support several derived alleles associated with human dark pigmentation may under directional selection by quantifying differences of selective pressures between populations. Our study provides a first attempt to quantitatively investigate the dynamics of selective pressures during different time periods in the evolution of human pigmentation, and may facilitate studies of the evolution of other complex traits.Author SummaryThe color variation of human skin, hair, and eye is affected by multiple genes with different roles. This diversity may be shaped by natural selection and adapted for ultraviolet radiation in different environments around the world. As human populations migrated out from Africa, the ultraviolet radiation in the environment they encountered also changed. It is possible that the selective pressures on human pigmentation varied throughout human evolutionary history. In this study, we develop a new approach and estimate historical selective pressures on light pigmentation not only in modern Europeans but also in proto-Eurasians. To our best knowledge, this is the first study that quantifies selective pressures during different time periods in the evolution of human pigmentation. Besides, we provide statistical evidence to support several genes associated with human dark pigmentation may be favored by natural selection. Thus, natural selection may not only affect light pigmentation in Eurasians, but also influence dark pigmentation in Africans.


2017 ◽  
Author(s):  
Farhad Hormozdiari ◽  
Steven Gazal ◽  
Bryce van de Geijn ◽  
Hilary Finucane ◽  
Chelsea J.-T. Ju ◽  
...  

AbstractThere is increasing evidence that many GWAS risk loci are molecular QTL for gene ex-pression (eQTL), histone modification (hQTL), splicing (sQTL), and/or DNA methylation (meQTL). Here, we introduce a new set of functional annotations based on causal posterior prob-abilities (CPP) of fine-mapped molecular cis-QTL, using data from the GTEx and BLUEPRINT consortia. We show that these annotations are very strongly enriched for disease heritability across 41 independent diseases and complex traits (average N = 320K): 5.84x for GTEx eQTL, and 5.44x for eQTL, 4.27-4.28x for hQTL (H3K27ac and H3K4me1), 3.61x for sQTL and 2.81x for meQTL in BLUEPRINT (all P ≤ 1.39e-10), far higher than enrichments obtained using stan-dard functional annotations that include all significant molecular cis-QTL (1.17-1.80x). eQTL annotations that were obtained by meta-analyzing all 44 GTEx tissues generally performed best, but tissue-specific blood eQTL annotations produced stronger enrichments for autoimmune dis-eases and blood cell traits and tissue-specific brain eQTL annotations produced stronger enrich-ments for brain-related diseases and traits, despite high cis-genetic correlations of eQTL effect sizes across tissues. Notably, eQTL annotations restricted to loss-of-function intolerant genes from ExAC were even more strongly enriched for disease heritability (17.09x; vs. 5.84x for all genes; P = 4.90e-17 for difference). All molecular QTL except sQTL remained significantly enriched for disease heritability in a joint analysis conditioned on each other and on a broad set of functional annotations from previous studies, implying that each of these annotations is uniquely informative for disease and complex trait architectures.


2007 ◽  
Vol 30 (4) ◽  
pp. 90
Author(s):  
Kirsten Niles ◽  
Sophie La Salle ◽  
Christopher Oakes ◽  
Jacquetta Trasler

Background: DNA methylation is an epigenetic modification involved in gene expression, genome stability, and genomic imprinting. In the male, methylation patterns are initially erased in primordial germ cells (PGCs) as they enter the gonadal ridge; methylation patterns are then acquired on CpG dinucleotides during gametogenesis. Correct pattern establishment is essential for normal spermatogenesis. To date, the characterization and timing of methylation pattern acquisition in PGCs has been described using a limited number of specific gene loci. This study aimed to describe DNA methylation pattern establishment dynamics during male gametogenesis through global methylation profiling techniques in a mouse model. Methods: Using a chromosome based approach, primers were designed for 24 regions spanning chromosome 9; intergenic, non-repeat, non-CpG island sequences were chosen for study based on previous evidence that these types of sequences are targets for testis-specific methylation events. The percent methylation was determined in each region by quantitative analysis of DNA methylation using real-time PCR (qAMP). The germ cell-specific pattern was determined by comparing methylation between spermatozoa and liver. To examine methylation in developing germ cells, spermatogonia from 2 day- and 6 day-old Oct4-GFP (green fluorescent protein) mice were isolated using fluorescence activated cell sorting. Results: As compared to liver, four loci were hypomethylated and five loci were hypermethylated in spermatozoa, supporting previous results indicating a unique methylation pattern in male germ cells. Only one region was hypomethylated and no regions were hypermethylated in day 6 spermatogonia as compared to mature spermatozoa, signifying that the bulk of DNA methylation is established prior to type A spermatogonia. The methylation in day 2 spermatogonia, germ cells that are just commencing mitosis, revealed differences of 15-20% compared to day 6 spermatogonia at five regions indicating that the most crucial phase of DNA methylation acquisition occurs prenatally. Conclusion: Together, these studies provide further evidence that germ cell methylation patterns differ from those in somatic tissues and suggest that much of methylation at intergenic sites is acquired during prenatal germ cell development. (Supported by CIHR)


2020 ◽  
Vol 20 ◽  
Author(s):  
Ezzatollah Fathi ◽  
Raheleh Farahzadi ◽  
Soheila Montazersaheb ◽  
Yasin Bagheri

Background:: Epigenetic modification pattern is considered as a characteristic feature in blood malignancies. Modifications in the DNA methylation modulators are recurrent in lymphoma and leukemia, so that, the distinct methylation pattern defines different types of leukemia. Generally, the role of epigenetics is less understood and most investigations are focused on genetic abnormalities and cytogenic studies to develop novel treatments for patients with hematologic disorders. Recently, understanding the underlying mechanism of acute lymphoblastic leukemia (ALL), especially epigenetic altera-tions as a driving force in the development of ALL opens a new era of investigation for developing promising strategy, be-yond available conventional therapy. Objective:: This review will focus on a better understanding of the epigenetic mechanisms in cancer development and pro-gression, with an emphasis on epigenetic alterations in ALL including, DNA methylation, histone modification, and mi-croRNA alterations. Other topics that will be discussed include the use of epigenetic alterations as a promising therapeutic target in order to develop novel well-suited approaches against ALL. Conclusion:: According to the literature review, leukemogenesis of ALL is extensively influenced by epigenetic modifica-tions, particularly DNA hyper-methylation, histone modification, and miRNA alteration.


Author(s):  
Daniel L. Hartl

A Primer of Population Genetics and Genomics, 4th edition, has been completely revised and updated to provide a concise but comprehensive introduction to the basic concepts of population genetics and genomics. Recent textbooks have tended to focus on such specialized topics as the coalescent, molecular evolution, human population genetics, or genomics. This primer bucks that trend by encouraging a broader familiarity with, and understanding of, population genetics and genomics as a whole. The overview ranges from mating systems through the causes of evolution, molecular population genetics, and the genomics of complex traits. Interwoven are discussions of ancient DNA, gene drive, landscape genetics, identifying risk factors for complex diseases, the genomics of adaptation and speciation, and other active areas of research. The principles are illuminated by numerous examples from a wide variety of animals, plants, microbes, and human populations. The approach also emphasizes learning by doing, which in this case means solving numerical or conceptual problems. The rationale behind this is that the use of concepts in problem-solving lead to deeper understanding and longer knowledge retention. This accessible, introductory textbook is aimed principally at students of various levels and abilities (from senior undergraduate to postgraduate) as well as practising scientists in the fields of population genetics, ecology, evolutionary biology, computational biology, bioinformatics, biostatistics, physics, and mathematics.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Xueying Qin ◽  
Ida K. Karlsson ◽  
Yunzhang Wang ◽  
Xia Li ◽  
Nancy Pedersen ◽  
...  

Abstract Background Studies on DNA methylation have the potential to discover mechanisms of cardiovascular disease (CVD) risk. However, the role of DNA methylation in CVD etiology remains unclear. Results We performed an epigenome-wide association study (EWAS) on CVD in a longitudinal sample of Swedish twins (535 individuals). We selected CpGs reaching the Bonferroni-corrected significance level (2 $$\times$$ ×  10–7) or the top-ranked 20 CpGs with the lowest P values if they did not reach this significance level in EWAS analysis associated with non-stroke CVD, overall stroke, and ischemic stroke, respectively. We further applied a bivariate autoregressive latent trajectory model with structured residuals (ALT-SR) to evaluate the cross-lagged effect between DNA methylation of these CpGs and cardiometabolic traits (blood lipids, blood pressure, and body mass index). Furthermore, mediation analysis was performed to evaluate whether the cross-lagged effects had causal impacts on CVD. In the EWAS models, none of the CpGs we selected reached the Bonferroni-corrected significance level. The ALT-SR model showed that DNA methylation levels were more likely to predict the subsequent level of cardiometabolic traits rather than the other way around (numbers of significant cross-lagged paths of methylation → trait/trait → methylation were 84/4, 45/6, 66/1 for the identified three CpG sets, respectively). Finally, we demonstrated significant indirect effects from DNA methylation on CVD mediated by cardiometabolic traits. Conclusions We present evidence for a directional association from DNA methylation on cardiometabolic traits and CVD, rather than the opposite, highlighting the role of epigenetics in CVD development.


Sign in / Sign up

Export Citation Format

Share Document