scholarly journals Low Dose of Cyanidin-3-O-Glucoside Alleviated Dextran Sulfate Sodium–Induced Colitis, Mediated by CD169+ Macrophage Pathway

2019 ◽  
Vol 25 (9) ◽  
pp. 1510-1521 ◽  
Author(s):  
Yuan Xia ◽  
Ling-min Tian ◽  
Yu Liu ◽  
Kang-Shun Guo ◽  
Min Lv ◽  
...  

Abstract Background Inflammatory bowel disease (IBD) is a chronic disease of the intestinal tract in which excessive activation of inflammatory response is correlated. Cyanidin-3-O-glucoside (C3G) is a powerful anti-inflammatory agent, widely existing in fruits and vegetables. However, the role of C3G has rarely been investigated in dextran sulfate sodium (DSS)–induced colitis. Methods In an attempt to elucidate the possible mechanism of IBD and develop new efficient therapeutic methods for colitis, we evaluated the effects of C3G on DSS-induced colitis. DSS-induced colitic C57BL/6 mice were intraperitoneal injected with 1ug C3G or phosphate buffer every 2 days, a total of 3 times; the changes in macrophages and regular T cells were analyzed by flow cytometry and immunofluorescence. Cytokines and chemokines were measured by real-time quantitative polymerase chain reaction. Results The results showed that C3G treatment did not cause changes in body weight and colon length as much as those of DSS-treated mice only. Cytokine expression levels such as interleukin (IL)- 6, IL-1β, IL-18, tumor necrosis factor α, interferon γ (IFN γ) in colons and mesenteric lymph nodes (mLNs) from C3G-treated mice were lower than those from colitic mice. Meanwhile, C3G injection inhibited the decrease in CCL22 levels and Tregs induction in colitic mice. Furthermore, the activation of macrophages by LPS and increase of CD169+ cells induced by type I IFN could be inhibited by C3G directly in vitro. Conclusions The study is the first to demonstrate strong effects of C3G to alleviate DSS-induced colonic damage in mice. The effect of C3G on DSS-induced colitis clearly showed a decrease of CD169+ macrophages in both the colon and mLNs. An increase of CD169+ cells induced by type I IFN could be inhibited by C3G. All these data suggest that the role of C3G in colitic inflammation was mediated at least partially by CD169+ cells and the type I IFN pathway.

2018 ◽  
Vol 115 (20) ◽  
pp. 5253-5258 ◽  
Author(s):  
Hideyuki Yanai ◽  
Shiho Chiba ◽  
Sho Hangai ◽  
Kohei Kometani ◽  
Asuka Inoue ◽  
...  

IFN regulatory factor 3 (IRF3) is a transcription regulator of cellular responses in many cell types that is known to be essential for innate immunity. To confirm IRF3’s broad role in immunity and to more fully discern its role in various cellular subsets, we engineered Irf3-floxed mice to allow for the cell type-specific ablation of Irf3. Analysis of these mice confirmed the general requirement of IRF3 for the evocation of type I IFN responses in vitro and in vivo. Furthermore, immune cell ontogeny and frequencies of immune cell types were unaffected when Irf3 was selectively inactivated in either T cells or B cells in the mice. Interestingly, in a model of lipopolysaccharide-induced septic shock, selective Irf3 deficiency in myeloid cells led to reduced levels of type I IFN in the sera and increased survival of these mice, indicating the myeloid-specific, pathogenic role of the Toll-like receptor 4–IRF3 type I IFN axis in this model of sepsis. Thus, Irf3-floxed mice can serve as useful tool for further exploring the cell type-specific functions of this transcription factor.


1994 ◽  
Vol 23 (2) ◽  
pp. 143-159 ◽  
Author(s):  
Hiroaki Ida ◽  
Akihiko Kurata ◽  
Katsumi Eguchi ◽  
Izumi Yamashita ◽  
Munetoshi Nakashima ◽  
...  

2019 ◽  
Vol 116 (35) ◽  
pp. 17480-17491 ◽  
Author(s):  
Sumit K. Matta ◽  
Philipp Olias ◽  
Zhou Huang ◽  
Qiuling Wang ◽  
Eugene Park ◽  
...  

In contrast to the importance of type II interferon-γ (IFN-γ) in control of toxoplasmosis, the role of type I IFN is less clear. We demonstrate here that TgIST, a secreted effector previously implicated in blocking type II IFN-γ signaling, also blocked IFN-β responses by inhibiting STAT1/STAT2-mediated transcription in infected cells. Consistent with a role for type I IFN in cell intrinsic control, ∆Tgist mutants were more susceptible to growth inhibition by murine and human macrophages activated with IFN-β. Additionally, type I IFN was important for production of IFN-γ by natural killer (NK) cells and recruitment of inflammatory monocytes at the site of infection. Mice lacking type I IFN receptors (Ifnar1−/−) showed increased mortality following infection with wild-type parasites and decreased virulence of ∆Tgist parasites was restored in Ifnar1−/− mice. The findings highlight the importance of type I IFN in control of toxoplasmosis and illuminate a parasite mechanism to counteract the effects of both type I and II IFN-mediated host defenses.


2020 ◽  
Vol 217 (11) ◽  
Author(s):  
Alice Lepelley ◽  
Maria José Martin-Niclós ◽  
Melvin Le Bihan ◽  
Joseph A. Marsh ◽  
Carolina Uggenti ◽  
...  

Heterozygous missense mutations in coatomer protein subunit α, COPA, cause a syndrome overlapping clinically with type I IFN-mediated disease due to gain-of-function in STING, a key adaptor of IFN signaling. Recently, increased levels of IFN-stimulated genes (ISGs) were described in COPA syndrome. However, the link between COPA mutations and IFN signaling is unknown. We observed elevated levels of ISGs and IFN-α in blood of symptomatic COPA patients. In vitro, both overexpression of mutant COPA and silencing of COPA induced STING-dependent IFN signaling. We detected an interaction between COPA and STING, and mutant COPA was associated with an accumulation of ER-resident STING at the Golgi. Given the known role of the coatomer protein complex I, we speculate that loss of COPA function leads to enhanced type I IFN signaling due to a failure of Golgi-to-ER STING retrieval. These data highlight the importance of the ER–Golgi axis in the control of autoinflammation and inform therapeutic strategies in COPA syndrome.


2004 ◽  
Vol 199 (4) ◽  
pp. 567-579 ◽  
Author(s):  
Mariolina Salio ◽  
Michael J. Palmowski ◽  
Ann Atzberger ◽  
Ian F. Hermans ◽  
Vincenzo Cerundolo

Plasmacytoid dendritic cells (PDCs) are a unique leukocyte population capable of secreting high levels of type I interferon (IFN) in response to viruses and bacterial stimuli. In vitro experiments have shown that upon maturation, human and murine PDCs develop into potent immunostimulatory cells; however, their ability to prime an immune response in vivo remains to be addressed. We report that CpG-matured murine PDCs are capable of eliciting in naive mice antigen-specific CTLs against endogenous antigens as well as exogenous peptides, but not against an exogenous antigen. Type I IFN is not required for priming, as injection of CpG-matured PDCs into type I IFN receptor–deficient mice elicits functional CTL responses. Mature PDCs prime CTLs that secrete IFN-γ and protect mice from a tumor challenge. In contrast, immature PDCs are unable to prime antigen-specific CTLs. However, mice injected with immature PDCs are fully responsive to secondary antigenic challenges, suggesting that PDCs have not induced long-lasting tolerance via anergic or regulatory T cells. Our results underline the heterogeneity and plasticity of different antigen-presenting cells, and reveal an important role of mature PDCs in priming CD8 responses to endogenous antigens, in addition to their previously reported ability to modulate antiviral responses via type I IFN.


2021 ◽  
Author(s):  
Laura Hidalgo‐Garcia ◽  
José Alberto Molina‐Tijeras ◽  
Francisco Huertas‐Peña ◽  
Antonio Jesús Ruiz‐Malagón ◽  
Patricia Diez‐Echave ◽  
...  

2021 ◽  
Author(s):  
Yu-Huan Chen ◽  
Jenn-Yeu Shin ◽  
Hsiu-Mei Wei ◽  
Chi-Chen Lin ◽  
Linda Chia-Hui Yu ◽  
...  

A fungal immunomodulatory protein Ling Zhi-8 (LZ-8) isolated from Ganoderma lucidum (GL) regulates immune cells and inhibits tumor growth; however, the role of LZ-8 in intestinal epithelial cells (IECs) is...


2021 ◽  
Vol 22 (6) ◽  
pp. 3090
Author(s):  
Toshimasa Shimizu ◽  
Hideki Nakamura ◽  
Atsushi Kawakami

Sjögren’s syndrome (SS) is a systemic autoimmune disease characterized by chronic inflammation of the salivary and lacrimal glands and extra-glandular lesions. Adaptive immune response including T- and B-cell activation contributes to the development of SS. However, its pathogenesis has not yet been elucidated. In addition, several patients with SS present with the type I interferon (IFN) signature, which is the upregulation of the IFN-stimulated genes induced by type I IFN. Thus, innate immune responses including type I IFN activity are associated with SS pathogenesis. Recent studies have revealed the presence of activation pattern recognition receptors (PRRs) including Toll-like receptors, RNA sensor retinoic acid-inducible gene I and melanoma differentiation-associated gene 5, and inflammasomes in infiltrating and epithelial cells of the salivary glands among patients with SS. In addition, the activation of PRRs via the downstream pathway such as the type I IFN signature and nuclear factor kappa B can directly cause organ inflammation, and it is correlated with the activation of adaptive immune responses. Therefore, this study assessed the role of the innate immune signal pathway in the development of inflammation and immune abnormalities in SS.


2021 ◽  
Vol 9 (2) ◽  
pp. 370
Author(s):  
Hyunjoon Park ◽  
Soyoung Yeo ◽  
Seokwon Kang ◽  
Chul Sung Huh

The role of the gut microbiota in the pathogenesis of inflammatory bowel disease (IBD) has been in focus for decades. Although metagenomic observations in patients/animal colitis models have been attempted, the microbiome results were still indefinite and broad taxonomic presumptions were made due to the cross-sectional studies. Herein, we conducted a longitudinal microbiome analysis in a dextran sulfate sodium (DSS)-induced colitis mouse model with a two-factor design based on serial DSS dose (0, 1, 2, and 3%) and duration for 12 days, and four mice from each group were sacrificed at two-day intervals. During the colitis development, a transition of the cecal microbial diversity from the normal state to dysbiosis and dynamic changes of the populations were observed. We identified genera that significantly induced or depleted depending on DSS exposure, and confirmed the correlations of the individual taxa to the colitis severity indicated by inflammatory biomarkers (intestinal bleeding and neutrophil-derived indicators). Of note, each taxonomic population showed its own susceptibility to the changing colitis status. Our findings suggest that an understanding of the individual susceptibility to colitis conditions may contribute to identifying the role of the gut microbes in the pathogenesis of IBD.


Sign in / Sign up

Export Citation Format

Share Document