Heterogeneity around CO2 vents obscures the effects of ocean acidification on shallow reef communities

Author(s):  
Caitlin O Blain ◽  
Sara Kulins ◽  
Craig A Radford ◽  
Mary A Sewell ◽  
Nick T Shears

Abstract Studies that use CO2 vents as natural laboratories to investigate the impacts of ocean acidification (OA) typically employ control-impact designs or local-scale gradients in pH or pCO2, where impacted sites are compared to reference sites. While these strategies can accurately represent well-defined and stable vent systems in relatively homogenous environments, it may not adequately encompass the natural variability of heterogeneous coastal environments where many CO2 vents exist. Here, we assess the influence of spatial heterogeneity on the perceived impacts of OA at a vent system well established in the OA literature. Specifically, we use a multi-scale approach to investigate and map the spatial variability in seawater pH and benthic communities surrounding vents at Whakaari-White Island, New Zealand to better understand the scale and complexity of ecological impacts of an acidified environment. We found a network of vents embedded in complex topography throughout the study area, and spatially variable pH and pCO2 levels. The distribution of habitats (i.e. macroalgal forests and turfing algae) was most strongly related to substratum type and sea urchin densities, rather than pH. Epifaunal communities within turfing algae differed with sampling distance from vents, but this pattern was driven by higher abundances of a number of taxa immediately adjacent to vents, where pH and temperature gradients are steep and white bacterial mats are prevalent. Our results contrast with previous studies at White Island that have used a control-impact design and suggested significant impacts of elevated CO2 on benthic communities. Instead, we demonstrate a highly heterogeneous reef where it is difficult to separate effects of reduced pH from spatial variation in reef communities. We urge that future research carefully considers and quantifies the biological and physical complexity of venting environments, and suggest that in dynamic systems, such as White Island, the use of control-impact designs can oversimplify and potentially overestimate the future impacts of OA.

2015 ◽  
Vol 12 (2) ◽  
pp. 365-372 ◽  
Author(s):  
S. Comeau ◽  
R. C. Carpenter ◽  
C. A. Lantz ◽  
P. J. Edmunds

Abstract. Ocean acidification (OA) poses a severe threat to tropical coral reefs, yet much of what is know about these effects comes from individual corals and algae incubated in isolation under high pCO2. Studies of similar effects on coral reef communities are scarce. To investigate the response of coral reef communities to OA, we used large outdoor flumes in which communities composed of calcified algae, corals, and sediment were combined to match the percentage cover of benthic communities in the shallow back reef of Moorea, French Polynesia. Reef communities in the flumes were exposed to ambient (~ 400 μatm) and high pCO2 (~ 1300 μatm) for 8 weeks, and calcification rates measured for the constructed communities including the sediments. Community calcification was reduced by 59% under high pCO2, with sediment dissolution explaining ~ 50% of this decrease; net calcification of corals and calcified algae remained positive but was reduced by 29% under elevated pCO2. These results show that, despite the capacity of coral reef calcifiers to maintain positive net accretion of calcium carbonate under OA conditions, reef communities might transition to net dissolution as pCO2 increases, particularly at night, due to enhanced sediment dissolution.


2014 ◽  
Vol 11 (8) ◽  
pp. 12323-12339 ◽  
Author(s):  
S. Comeau ◽  
R. C. Carpenter ◽  
C. A. Lantz ◽  
P. J. Edmunds

Abstract. Ocean acidification (OA) poses a severe threat to tropical coral reefs, yet much of what is know about these effects comes from individual corals and algae incubated in isolation under high pCO2. Studies of similar effects on coral reef communities are scarce. To investigate the response of coral reef communities to OA, we used large outdoor flumes in which communities composed of calcified algae, corals, and sediment were combined to match the percentage cover of benthic communities in the shallow back reef of Moorea, French Polynesia. Reef communities in the flumes were exposed to ambient (~400 μatm) and high pCO2 (~1300 μatm) for 8 weeks, and calcification rates measured for the constructed communities including the sediments. Community calcification was depressed 59% under high pCO2, with sediment dissolution explaining ~50% of this decrease; net calcification of corals and calcified algae remained positive, but was reduced 29% under elevated pCO2. These results show that despite the capacity of coral reef calcifiers to maintain positive net accretion of calcium carbonate under OA conditions, reef communities might switch to net dissolution as pCO2 increases, particularly at night, due to enhanced sediment dissolution.


2021 ◽  
Author(s):  
Kristy Kroeker ◽  
Tye Kindinger ◽  
Heidi Hirsh ◽  
Melissa Ward ◽  
Tessa Hill ◽  
...  

Abstract. As global change continues to progress, there is a growing interest in assessing any local levers that could be used to manage the social and ecological impacts of rising CO2 concentrations. While habitat conservation and restoration have been widely recognized for their role in carbon storage and sequestration at a global scale, the potential for managers to use vegetated habitats to mitigate CO2 concentrations at local scales in marine ecosystems facing the accelerating threat of ocean acidification (OA) has only recently garnered attention. Early studies have shown that submerged aquatic vegetation, such as seagrass beds, can locally draw down CO2 and raise seawater pH in the water column through photosynthesis, but empirical studies of local OA mitigation are still quite limited. Here, we leverage the extensive body of literature on seagrass community metabolism to highlight key considerations for local OA management through seagrass conservation or restoration. In particular, we synthesize the results from 62 studies reporting in situ rates of seagrass gross primary productivity, respiration, and/or net community productivity to highlight spatial and temporal variability in carbon fluxes. We illustrate that daytime net community production is positive overall, and similar across seasons and geographies. Full-day net community production rates, which illustrate the potential cumulative effect of seagrass beds on seawater biogeochemistry integrated over day and night, were also positive overall, but were higher in summer months in both tropical and temperate ecosystems. Although our analyses suggest seagrass meadows are generally autotrophic, the modeled effects on seawater pH are relatively small in magnitude. In addition, we illustrate that periods when full-day net community production is highest could be associated with lower nighttime pH and increased diurnal variability in seawater pCO2/pH. Finally, we highlight important areas for future research to inform the next steps for assessing the utility of this approach for management.


2020 ◽  
Vol 71 (3) ◽  
pp. 321 ◽  
Author(s):  
R. Zitoun ◽  
S. D. Connell ◽  
C. E. Cornwall ◽  
K. I. Currie ◽  
K. Fabricius ◽  
...  

In situ effects of ocean acidification are increasingly studied at submarine CO2 vents. Here we present a preliminary investigation into the water chemistry and biology of cool temperate CO2 vents near Whakaari–White Island, New Zealand. Water samples were collected inside three vent shafts, within vents at a distance of 2m from the shaft and at control sites. Vent samples contained both seawater pH on the total scale (pHT) and carbonate saturation states that were severely reduced, creating conditions as predicted for beyond the year 2100. Vent samples showed lower salinities, higher temperatures and greater nutrient concentrations. Sulfide levels were elevated and mercury levels were at concentrations considered toxic at all vent and control sites, but stable organic and inorganic ligands were present, as deduced from Cu speciation data, potentially mediating harmful effects on local organisms. The biological investigations focused on phytoplankton, zooplankton and macroalgae. Interestingly, we found lower abundances but higher diversity of phytoplankton and zooplankton at sites in the direct vicinity of Whakaari. Follow-up studies will need a combination of methods and approaches to attribute observations to specific drivers. The Whakaari vents represent a unique ecosystem with considerable biogeochemical complexity, which, like many other vent systems globally, require care in their use as a model of ‘future oceans’.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 189
Author(s):  
Zhanying Zheng ◽  
Sharon Shui Yee Leung ◽  
Raghvendra Gupta

Dry powder inhaler (DPI) is a device used to deliver a drug in dry powder form to the lungs. A wide range of DPI products is currently available, with the choice of DPI device largely depending on the dose, dosing frequency and powder properties of formulations. Computational fluid dynamics (CFD), together with various particle motion modelling tools, such as discrete particle methods (DPM) and discrete element methods (DEM), have been increasingly used to optimise DPI design by revealing the details of flow patterns, particle trajectories, de-agglomerations and depositions within the device and the delivery paths. This review article focuses on the development of the modelling methodologies of flow and particle behaviours in DPI devices and their applications to device design in several emerging fields. Various modelling methods, including the most recent multi-scale approaches, are covered and the latest simulation studies of different devices are summarised and critically assessed. The potential and effectiveness of the modelling tools in optimising designs of emerging DPI devices are specifically discussed, such as those with the features of high-dose, pediatric patient compatibility and independency of patients’ inhalation manoeuvres. Lastly, we summarise the challenges that remain to be addressed in DPI-related fluid and particle modelling and provide our thoughts on future research direction in this field.


2013 ◽  
Vol 10 (7) ◽  
pp. 4897-4909 ◽  
Author(s):  
K. R. N. Anthony ◽  
G. Diaz-Pulido ◽  
N. Verlinden ◽  
B. Tilbrook ◽  
A. J. Andersson

Abstract. Ocean acidification is a threat to marine ecosystems globally. In shallow-water systems, however, ocean acidification can be masked by benthic carbon fluxes, depending on community composition, seawater residence time, and the magnitude and balance of net community production (NCP) and calcification (NCC). Here, we examine how six benthic groups from a coral reef environment on Heron Reef (Great Barrier Reef, Australia) contribute to changes in the seawater aragonite saturation state (Ωa). Results of flume studies using intact reef habitats (1.2 m by 0.4 m), showed a hierarchy of responses across groups, depending on CO2 level, time of day and water flow. At low CO2 (350–450 μatm), macroalgae (Chnoospora implexa), turfs and sand elevated Ωa of the flume water by around 0.10 to 1.20 h−1 – normalised to contributions from 1 m2 of benthos to a 1 m deep water column. The rate of Ωa increase in these groups was doubled under acidification (560–700 μatm) and high flow (35 compared to 8 cm s−1). In contrast, branching corals (Acropora aspera) increased Ωa by 0.25 h−1 at ambient CO2 (350–450 μatm) during the day, but reduced Ωa under acidification and high flow. Nighttime changes in Ωa by corals were highly negative (0.6–0.8 h−1) and exacerbated by acidification. Calcifying macroalgae (Halimeda spp.) raised Ωa by day (by around 0.13 h−1), but lowered Ωa by a similar or higher amount at night. Analyses of carbon flux contributions from benthic communities with four different compositions to the reef water carbon chemistry across Heron Reef flat and lagoon indicated that the net lowering of Ωa by coral-dominated areas can to some extent be countered by long water-residence times in neighbouring areas dominated by turfs, macroalgae and carbonate sand.


2017 ◽  
Vol 113 (11/12) ◽  
Author(s):  
Justine Rudman ◽  
Paul Gauché ◽  
Karen J. Esler

According to recent national energy plans and policy documents, the number of renewable energy developments is expected to increase in South Africa, thus contributing to the diversification of the country’s energy system. Consequently, numerous solar power developments are being deployed in the sunny arid interior – areas generally represented by the Nama-Karoo and Savanna Biomes. These developments come with a range of novel environmental impacts, providing opportunities for multidimensional exploratory research. Here, a mixed-method approach was used to identify and investigate possible environmental impacts associated with two types of solar power plants: concentrating solar power and photovoltaic. Structured interviews conducted with experts and experienced professionals, together with observations from site visits generated complementary findings. In addition to the risk of cumulative ecological impacts associated with individual solar plant developments, landscape impacts of multiple power plants and the direct impact on avifauna were found to be the most significant environmental impacts. These direct impacts appear to be most significant during the construction stage, which represents an intensive 10% of the total power plant lifespan. This investigation provides an early, broad and informative perspective on the experienced and expected impacts of solar power in South African arid regions as well as insights to possible future research areas.


2021 ◽  
Author(s):  
Christopher Jury ◽  
Keisha Bahr ◽  
Evan Barba ◽  
Russell Brainard ◽  
Annick Cros ◽  
...  

Abstract Coral reefs are among the most sensitive ecosystems affected by ocean acidification and warming, and are predicted to shift from net accreting calcifier-dominated systems to net eroding algal-dominated systems over the coming decades. Here we present a long-term experimental study examining the responses of entire mesocosm coral reef communities to acidification (-0.2 pH units), warming (+ 2°C), and combined future ocean (-0.2 pH, + 2°C) treatments. We show that under future ocean conditions, net calcification rates declined yet remained positive, corals showed reduced abundance yet were not extirpated, and community composition shifted while species richness was maintained. Our results suggest that under Paris Climate Agreement targets, coral reefs could persist in an altered functional state rather than collapse.


2008 ◽  
Vol 5 (4) ◽  
pp. 1023-1031 ◽  
Author(s):  
X. Mari

Abstract. The absorption of anthropogenic atmospheric carbon dioxide (CO2) by the ocean provokes its acidification. This acidification may alter several oceanic processes, including the export of biogenic carbon from the upper layer of the ocean, hence providing a feedback on rising atmospheric carbon concentrations. The effect of seawater acidification on transparent exopolymeric particles (TEP) driven aggregation and sedimentation processes were investigated by studying the interactions between latex beads and TEP precursors collected in the lagoon of New Caledonia. A suspension of TEP and beads was prepared and the formation of mixed aggregates was monitored as a function of pH under increasing turbulence intensities. The pH was controlled by addition of sulfuric acid. Aggregation and sedimentation processes driven by TEP were drastically reduced when the pH of seawater decreases within the expected limits imposed by increased anthropogenic CO2 emissions. In addition to the diminution of TEP sticking properties, the diminution of seawater pH led to a significant increase of the TEP pool, most likely due to swollen structures. A diminution of seawater pH by 0.2 units or more led to a stop or a reversal of the downward flux of particles. If applicable to oceanic conditions, the sedimentation of marine aggregates may slow down or even stop as the pH decreases, and the vertical flux of organic carbon may reverse. This would enhance both rising atmospheric carbon and ocean acidification.


Sign in / Sign up

Export Citation Format

Share Document