scholarly journals What ocean biogeochemical models can tell us about bottom-up control of ecosystem variability

2011 ◽  
Vol 68 (6) ◽  
pp. 1030-1044 ◽  
Author(s):  
A. Gnanadesikan ◽  
J. P. Dunne ◽  
J. John

Abstract Gnanadesikan, A., Dunne, J. P., and John, J. 2011. What ocean biogeochemical models can tell us about bottom-up control of ecosystem variability. – ICES Journal of Marine Science, 68: 1030–1044. Processes included in earth system models amplify the impact of climate variability on phytoplankton biomass and, therefore, on upper trophic levels. Models predict much larger relative interannual variability in large phytoplankton biomass than in total phytoplankton biomass, supporting the goal of better constraining size-structured primary production and biomass from remote sensing. The largest modelled variability in annually averaged large phytoplankton biomass is associated with changes in the areal extent of relatively productive regions. Near the equator, changes in the areal extent of the high-productivity zone are driven by large-scale shifts in nutrient fields, as well as by changes in currents. Along the poleward edge of the Subtropical Gyres, changes in physical mixing dominate. Finally, models indicate that high-latitude interannual variability in large phytoplankton biomass is greatest during spring. Mechanisms for producing such variability differ across biomes with internal ocean processes, such as convection complicating efforts to link ecosystem variability to climate modes defined using sea surface temperature alone. In salinity-stratified subpolar regions, changes in bloom timing driven by salinity can produce correlations between low surface temperatures and high productivity, supporting the potential importance of using coupled atmosphere–ocean reanalyses, rather than simple forced ocean reanalyses, for attributing past ecosystem shifts.

2021 ◽  
Vol 9 ◽  
Author(s):  
Kyla M. Dahlin ◽  
Phoebe L. Zarnetske ◽  
Quentin D. Read ◽  
Laura A. Twardochleb ◽  
Aaron G. Kamoske ◽  
...  

Global declines in biodiversity have the potential to affect ecosystem function, and vice versa, in both terrestrial and aquatic ecological realms. While many studies have considered biodiversity-ecosystem function (BEF) relationships at local scales within single realms, there is a critical need for more studies examining BEF linkages among ecological realms, across scales, and across trophic levels. We present a framework linking abiotic attributes, productivity, and biodiversity across terrestrial and inland aquatic realms. We review examples of the major ways that BEF linkages form across realms–cross-system subsidies, ecosystem engineering, and hydrology. We then formulate testable hypotheses about the relative strength of these connections across spatial scales, realms, and trophic levels. While some studies have addressed these hypotheses individually, to holistically understand and predict the impact of biodiversity loss on ecosystem function, researchers need to move beyond local and simplified systems and explicitly investigate cross-realm and trophic interactions and large-scale patterns and processes. Recent advances in computational power, data synthesis, and geographic information science can facilitate studies spanning multiple ecological realms that will lead to a more comprehensive understanding of BEF connections.


2015 ◽  
Vol 96 (6) ◽  
pp. 1201-1210 ◽  
Author(s):  
Martin Bruschetti ◽  
Tomas Luppi ◽  
Oscar Iribarne

Depletion of phytoplankton biomass by the introduced reef-forming polychaete Ficopomatus enigmaticus has previously been observed in the Mar Chiquita lagoon (37°40′S 57°23′W; Argentina), but the effect of polychaetes on the higher trophic levels is still unknown. To evaluate the effect of this polychaete on the zooplankton assemblage, replicated mesocosm experiments (N = 10) were performed during spring, summer and winter. Mesocosms with reefs and without reefs were installed and grazing intensity and the effect on the zooplankton assemblage by the polychaetes were assessed. Our results show that the reefs of F. enigmaticus generate minor changes in overall composition of zooplankton assemblage. Although the structure of the zooplankton assemblage was different between seasons, the impact of the reefs was not significant in any of them. There was no relationship between the decline of food resource by grazing and changes in the structure of the zooplankton assemblage. Thus, contrary to our hypothesis, the grazing impact of the invasive polychaete on the biomass of primary producers did not generate cascading effects to higher trophic levels. However, changes in some components of the zooplankton assemblage (e.g. cladocerans) clearly show that the reefs of F. enigmaticus have the potential to affect the structure of the zooplankton community. The lack of data of community composition and abundance of zooplankton before the invasion limits the understanding of how this polychaete might have affected the structure and abundance of the zooplankton of this lagoon. Nevertheless this work suggests that these changes may not be so significant.


2017 ◽  
Author(s):  
Fabian A. Gomez ◽  
Sang-Ki Lee ◽  
Yanyun Liu ◽  
Frank J. Hernandez Jr. ◽  
Frank E. Muller-Karger ◽  
...  

Abstract. Biogeochemical models that simulate realistic lower trophic levels dynamics, including the representation of main phytoplankton and zooplankton functional groups, are valuable tools for our understanding of natural and anthropogenic disturbances in marine ecosystems. However, previous three-dimensional biogeochemical modeling studies in the northern and deep Gulf of Mexico (GoM) have used only one phytoplankton and one zooplankton type. To advance our modeling capability of the GoM ecosystem and to investigate the dominant spatial and seasonal patterns phytoplankton biomass, we configured a 14-component biogeochemical model that explicitly represents nanophytoplankton, diatoms, micro-, and mesozooplankton. Our model outputs compare well with satellite and in situ observations, reproducing dominant seasonal patterns in chlorophyll and primary production. The model results show that diatom growth is strongly silica limited (> 95 %) in the deep GoM, and both nitrogen and silica limited (30–70 %) in the northern shelf. Nanophytoplankton growth is weakly nutrient limited in the Mississippi delta year-round (


2015 ◽  
Vol 15 (5) ◽  
pp. 2341-2365 ◽  
Author(s):  
P. Hess ◽  
D. Kinnison ◽  
Q. Tang

Abstract. Despite the need to understand the impact of changes in emissions and climate on tropospheric ozone, the attribution of tropospheric interannual ozone variability to specific processes has proven difficult. Here, we analyze the stratospheric contribution to tropospheric ozone variability and trends from 1953 to 2005 in the Northern Hemisphere (NH) mid-latitudes using four ensemble simulations of the free running (FR) Whole Atmosphere Community Climate Model (WACCM). The simulations are externally forced with observed time-varying (1) sea-surface temperatures (SSTs), (2) greenhouse gases (GHGs), (3) ozone depleting substances (ODS), (4) quasi-biennial oscillation (QBO), (5) solar variability (SV) and (6) stratospheric sulfate surface area density (SAD). A detailed representation of stratospheric chemistry is simulated, including the ozone loss due to volcanic eruptions and polar stratospheric clouds. In the troposphere, ozone production is represented by CH4–NOx smog chemistry, where surface chemical emissions remain interannually constant. Despite the simplicity of its tropospheric chemistry, at many NH measurement locations, the interannual ozone variability in the FR WACCM simulations is significantly correlated with the measured interannual variability. This suggests the importance of the external forcing applied in these simulations in driving interannual ozone variability. The variability and trend in the simulated 1953–2005 tropospheric ozone from 30 to 90° N at background surface measurement sites, 500 hPa measurement sites and in the area average are largely explained on interannual timescales by changes in the 30–90° N area averaged flux of ozone across the 100 hPa surface and changes in tropospheric methane concentrations. The average sensitivity of tropospheric ozone to methane (percent change in ozone to a percent change in methane) from 30 to 90° N is 0.17 at 500 hPa and 0.21 at the surface; the average sensitivity of tropospheric ozone to the 100 hPa ozone flux (percent change in ozone to a percent change in the ozone flux) from 30 to 90° N is 0.19 at 500 hPa and 0.11 at the surface. The 30–90° N simulated downward residual velocity at 100 hPa increased by 15% between 1953 and 2005. However, the impact of this on the 30–90° N 100 hPa ozone flux is modulated by the long-term changes in stratospheric ozone. The ozone flux decreases from 1965 to 1990 due to stratospheric ozone depletion, but increases again by approximately 7% from 1990 to 2005. The first empirical orthogonal function of interannual ozone variability explains from 40% (at the surface) to over 80% (at 150 hPa) of the simulated ozone interannual variability from 30 to 90° N. This identified mode of ozone variability shows strong stratosphere–troposphere coupling, demonstrating the importance of the stratosphere in an attribution of tropospheric ozone variability. The simulations, with no change in emissions, capture almost 50% of the measured ozone change during the 1990s at a variety of locations. This suggests that a large portion of the measured change is not due to changes in emissions, but can be traced to changes in large-scale modes of ozone variability. This emphasizes the difficulty in the attribution of ozone changes, and the importance of natural variability in understanding the trends and variability of ozone. We find little relation between the El Niño–Southern Oscillation (ENSO) index and large-scale tropospheric ozone variability over the long-term record.


2021 ◽  
Author(s):  
Flora Vincent ◽  
Matti Gralka ◽  
Guy Schleyer ◽  
Daniella J Schatz ◽  
Miguel Cabrera-Brudau ◽  
...  

Algal blooms are hotspots of marine primary production and play central roles in microbial ecology and global nutrient cycling. When blooms collapse, organic carbon is transferred to higher trophic levels, microbial respiration or sinking in proportions that depend on the dominant mortality agent. Viral infection can lead to bloom termination, but its impact on the fate of carbon remains an open question. Here, we characterized the consequences of viral infection on the microbiome composition and biogeochemical landscape of marine ecosystems by conducting a large-scale mesocosm experiment. Moniroting of seven induced coccolithophore blooms, which showed different degrees of viral infection, revealed that only high levels of viral infection caused significant shifts in the composition of free-living bacterial and eukaryotic assemblages. Intriguingly, viral infection favored the growth of eukaryotic heterotrophs (thraustochytrids) over bacteria as potential recyclers of organic matter. By combining modeling and quantification of active viral infection at a single-cell resolution, we estimate that viral infection can increase per-cell rates of extracellular carbon release by 2-4.5 fold. This happened via production of acidic polysaccharides and particulate inorganic carbon, two major contributors to carbon sinking into the deep ocean. These results reveal the impact of viral infection on the fate of carbon through microbial recyclers of organic matter in large-scale coccolithophore blooms.


2021 ◽  
Vol 8 ◽  
Author(s):  
N. Sunanda ◽  
J. Kuttippurath ◽  
R. Peter ◽  
Kunal Chakraborty ◽  
A. Chakraborty

COrona VIrus Disease (COVID) 2019 pandemic forced most countries to go into complete lockdown and India went on complete lockdown from 24th March 2020 to 8th June 2020. To understand the possible implications of lockdown, we analyze the long-term distribution of Net Primary Productivity (NPP) in the North Indian Ocean (NIO) and the factors that influence NPP directly and indirectly, for the period 2003–2019 and 2020 separately. There exists a seasonal cycle in the relationship between Aerosol Optical Depth (AOD), Chlorophyll-a (Chl-a) and NPP in agreement with the seasonal transport of aerosols and dust into these oceanic regions. In Arabian Sea (AS), the highest Chl-a (0.58 mg/m3), NPP (696.57 mg/C/m2/day) and AOD (0.39) are observed in June, July, August, and September (JJAS). Similarly, maximum Chl-a (0.48 mg/m3) and NPP (486.39 mg/C/m2/day) are found in JJAS and AOD (0.27) in March, April, and May (MAM) in Bay of Bengal. The interannual variability of Chl-a and NPP with wind speed and Sea Surface Temperature (SST) is also examined, where the former has a positive and the latter has a negative feedback to NPP. The interannual variability of NPP reveals a decreasing trend in NPP, which is interlinked with the increasing trend in SST and AOD. The analysis of wind, SST, Chl-a, and AOD for the pre-lockdown, lockdown, and post lockdown periods of 2020 is employed to understand the impact of COVID-19 lockdown on NPP. The assessment shows the reduction in AOD, decreased wind speeds, increased SST and reduced NPP during the lockdown period as compared to the pre-lockdown, post-lockdown and climatology. This analysis is expected to help to understand the impact of aerosols on the ocean biogeochemistry, nutrient cycles in the ocean biogeochemical models, and to study the effects of climate change on ocean ecosystems.


1995 ◽  
Vol 73 (12) ◽  
pp. 2231-2237 ◽  
Author(s):  
Nicholas F. G. Folkard ◽  
James N. M. Smith

Boreal plant communities are strongly nutrient limited, and the animals of the boreal forest may therefore experience bottom-up nutrient limitation. We conducted a 5-year experimental study of the impact of aerial nitrogen fertilization on birds of the boreal forest near Kluane Lake, southwestern Yukon, to test for such bottom-up effects. Specifically, we tested if avian abundance and species richness increased after fertilization. Variable circular-plot point counts were made to estimate bird numbers and species richness each summer from 1988 to 1992. Fertilization had no effect on abundance for the first two summers, but total abundances of the seven commonest passerine bird species increased by an average of 46% over the final 3 years. Fertilization had no effect on bird species richness. Population densities and species richness were both low at Kluane compared with patterns seen in temperate forest. Yellow-rumped warblers (Dendroica coronata), dark-eyed juncos (Junco hyemalis), and Swainson's thrushes (Catharus ustulatus) dominated the passerine community at Kluane. There was only moderate spatial and temporal variation in songbird numbers on control plots over the 5-year study period.


2005 ◽  
Vol 62 (7) ◽  
pp. 1511-1523 ◽  
Author(s):  
Andrew J. Pershing ◽  
Charles H. Greene ◽  
Jack W. Jossi ◽  
Loretta O'Brien ◽  
Jon K.T. Brodziak ◽  
...  

Abstract We used principal component analysis (PCA) to explore interannual changes in a time-series lasting more than 40 years of zooplankton abundance from NOAA's Continuous Plankton Recorder (CPR) survey. This analysis identified a complex of taxa, including Centropages typicus, Oithona spp., Pseudocalanus spp., and Metridia lucens that followed a common pattern of interdecadal variability characterized by a dramatic increase in these taxa around 1990, followed by a rapid decline in 2002. All of these taxa showed a large proportional increase in winter abundance between the 1980s and 1990s. These changes could be driven by increased primary productivity during winter, caused by a large-scale freshening of the Northwest Atlantic Shelf. In addition to the “community shift” mode, the analysis found a strong mode of interannual variability attributed to previously described changes in the abundance of late-stage Calanus finmarchicus. To explore the impact of these modes on higher trophic levels, we correlated the zooplankton modes with recruitment time-series from 12 fish stocks from the Gulf of Maine region. Several significant correlations were found, suggesting that the changes in the zooplankton modes may reflect broad changes in the Gulf of Maine ecosystem.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5153
Author(s):  
Marcel Tintelott ◽  
Vivek Pachauri ◽  
Sven Ingebrandt ◽  
Xuan Thang Vu

Silicon nanowire field-effect transistors (SiNW-FET) have been studied as ultra-high sensitive sensors for the detection of biomolecules, metal ions, gas molecules and as an interface for biological systems due to their remarkable electronic properties. “Bottom-up” or “top-down” approaches that are used for the fabrication of SiNW-FET sensors have their respective limitations in terms of technology development. The “bottom-up” approach allows the synthesis of silicon nanowires (SiNW) in the range from a few nm to hundreds of nm in diameter. However, it is technologically challenging to realize reproducible bottom-up devices on a large scale for clinical biosensing applications. The top-down approach involves state-of-the-art lithography and nanofabrication techniques to cast SiNW down to a few 10s of nanometers in diameter out of high-quality Silicon-on-Insulator (SOI) wafers in a controlled environment, enabling the large-scale fabrication of sensors for a myriad of applications. The possibility of their wafer-scale integration in standard semiconductor processes makes SiNW-FETs one of the most promising candidates for the next generation of biosensor platforms for applications in healthcare and medicine. Although advanced fabrication techniques are employed for fabricating SiNW, the sensor-to-sensor variation in the fabrication processes is one of the limiting factors for a large-scale production towards commercial applications. To provide a detailed overview of the technical aspects responsible for this sensor-to-sensor variation, we critically review and discuss the fundamental aspects that could lead to such a sensor-to-sensor variation, focusing on fabrication parameters and processes described in the state-of-the-art literature. Furthermore, we discuss the impact of functionalization aspects, surface modification, and system integration of the SiNW-FET biosensors on post-fabrication-induced sensor-to-sensor variations for biosensing experiments.


2021 ◽  
Author(s):  
Flora VINCENT ◽  
Matti Gralka ◽  
Guy Schleyer ◽  
Daniella Schatz ◽  
Miguel Cabrera-Brufau ◽  
...  

Abstract Algal blooms are hotspots of marine primary production and play central roles in microbial ecology and global nutrient cycling. When blooms collapse, organic carbon is transferred to higher trophic levels, microbial respiration or sinking in proportions that depend on the dominant mortality agent. Viral infection can lead to bloom termination, but its impact on the fate of carbon remains an open question. Here, we characterized the consequences of viral infection on the microbiome composition and biogeochemical landscape of marine ecosystems by conducting a large-scale mesocosm experiment. Moniroting of seven induced coccolithophore blooms, which showed different degrees of viral infection, revealed that only high levels of viral infection caused significant shifts in the composition of free-living bacterial and eukaryotic assemblages. Intriguingly, viral infection favored the growth of eukaryotic heterotrophs (thraustochytrids) over bacteria as potential recyclers of organic matter. By combining modeling and quantification of active viral infection at a single-cell resolution, we estimate that viral infection can increase per-cell rates of extracellular carbon release by 2-4.5 fold. This happened via production of acidic polysaccharides and particulate inorganic carbon, two major contributors to carbon sinking into the deep ocean. These results reveal the impact of viral infection on the fate of carbon through microbial recyclers of organic matter in large-scale coccolithophore blooms.


Sign in / Sign up

Export Citation Format

Share Document