Mechanical characterization of porcine liver properties for computational simulation of indentation on cancerous tissue

2020 ◽  
Vol 37 (4) ◽  
pp. 469-490 ◽  
Author(s):  
Yingqiao Yang ◽  
Kewei Li ◽  
Gerhard Sommer ◽  
Kai-Leung Yung ◽  
Gerhard A Holzapfel

Abstract An accurate characterization of soft biological tissue properties is essential for a realistic simulation of surgical procedures. Unconfined uniaxial compression tests with specimens affixed to the fixtures are often performed to characterize the stress-stretch curves of soft biological tissues, with which the material parameters can be obtained. However, the constrained boundary condition causes non-uniform deformation during the uniaxial test, posing challenges for accurate measurement of tissue deformation. In this study, we measured the deformation locally at the middle of liver specimens and obtained the corresponding stress-stretch curves. Since the effect of the constrained boundary condition on the local deformation of specimen is minimized, the stress-stretch curves are thus more realistic. Subsequently, we fitted the experimental stress-stretch curves with several constitutive models and found that the first-order Ogden hyperelastic material model was most suitable for characterizing the mechanical properties of porcine liver tissues. To further verify the characterized material properties, we carried out indentation tests on porcine liver specimens and compared the experimental data with computational results by using finite element simulations. A good agreement was achieved. Finally, we constructed computational models of liver tissue with a tumor and investigated the effect of the tumor on the mechanical response of the tissue under indentation. The computational results revealed that the liver specimen with tumor shows a stiffer response if the distance between the tumor and the indenter is small.

2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
J. Carlos Gómez-Blanco ◽  
F. Javier Martínez-Reina ◽  
Domingo Cruz ◽  
J. Blas Pagador ◽  
Francisco M. Sánchez-Margallo ◽  
...  

Many urologists are currently studying new designs of ureteral stents to improve the quality of their operations and the subsequent recovery of the patient. In order to help during this design process, many computational models have been developed to simulate the behaviour of different biological tissues and provide a realistic computational environment to evaluate the stents. However, due to the high complexity of the involved tissues, they usually introduce simplifications to make these models less computationally demanding. In this study, the interaction between urine flow and a double-J stented ureter with a simplified geometry has been analysed. The Fluid-Structure Interaction (FSI) of urine and the ureteral wall was studied using three models for the solid domain: Mooney-Rivlin, Yeoh, and Ogden. The ureter was assumed to be quasi-incompressible and isotropic. Data obtained in previous studies from ex vivo and in vivo mechanical characterization of different ureters were used to fit the mentioned models. The results show that the interaction between the stented ureter and urine is negligible. Therefore, we can conclude that this type of models does not need to include the FSI and could be solved quite accurately assuming that the ureter is a rigid body and, thus, using the more simple Computational Fluid Dynamics (CFD) approach.


2006 ◽  
Vol 975 ◽  
Author(s):  
Sara Elizabeth Olesiak ◽  
Michelle Oyen ◽  
Matthew Sponheimer ◽  
Jaelyn J. Eberle ◽  
Virginia L. Ferguson

ABSTRACTBone plays a key role in the paleontological and archeological records and can provide insight into the biology, ecology and the environment of ancient vertebrates. Examination of bone at the tissue level reveals a definitive relationship between nanomechanical properties and the local organic content, mineral content, and microstructural organization. However, it is unclear as to how these properties change following fossilization, or diagenesis, where the organic phase is rapidly removed and the remaining mineral phase is reinforced by the deposition of apatites, calcites, and other minerals. While the process of diagenesis is poorly understood, its outcome clearly results in the potential for dramatic alteration of the mechanical response of biological tissues. In this study, fossilized specimens of mammalian long bones, collected from Colorado and Wyoming, were studied for mechanical variations. Nanoindentation performed in both longitudinal and transverse directions revealed preservation of bone's natural anisotropy as transverse modulus values were consistently smaller than longitudinal values. Additionally modulus values of fossilized bone from 35.0 to 89.1 GPa increased linearly with logarithm of the sample's age. Future studies will aim to clarify what mechanical and material elements of bone are retained during diagenesis as bone becomes part of the geologic milieu.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Jiyun Zhao ◽  
Chao Cao ◽  
Guilin Li ◽  
Liuyin Chao ◽  
Haigang Ding ◽  
...  

As a natural polymer, gelatin is increasingly being used as a substitute for animals or humans for the simulation and testing of surgical procedures. In the current study, the similarity verification was neglected and a 10 wt.% or 20 wt.% gelatin sample was used directly. To compare the mechanical similarities between gelatin and biological tissues, different concentrations of gelatin samples were subjected to tensile, compression, and indentation tests and compared with porcine liver tissue. The loading rate in the three tests fully considered the surgical application conditions; notably, a loading speed up to 12 mm/s was applied in the indentation testing, the tensile test was performed at a speed of 1 mm/s until fracture, and the compression tests were compressed at a rate of 0.16 mm/s and 1 mm/s. A comparison of the results shows that the mechanical behaviors of low-concentration gelatin samples involved in the study are similar to the mechanical behavior of porcine liver tissue. The results of the gelatin material were mathematically expressed by the Mooney-Rivlin model and the Prony series. The results show that the material properties of gelatin can mimic the range of mechanical characteristics of porcine liver, and gelatin can be used as a matrix to further improve the similarity between substitute materials and biological tissues.


2017 ◽  
Vol 139 (12) ◽  
Author(s):  
J. Weickenmeier ◽  
M. Jabareen ◽  
B. J. D. Le Révérend ◽  
M. Ramaioli ◽  
E. Mazza

Predictive simulations of the mastication system would significantly improve our understanding of temporomandibular joint (TMJ) disorders and the planning of cranio-maxillofacial surgery procedures. Respective computational models must be validated by experimental data from in vivo characterization of the mastication system's mechanical response. The present pilot-study demonstrates the feasibility of a combined experimental and numerical procedure to validate a computer model of the masseter muscle. An experimental setup is proposed that provides a simultaneous bite force measurement and ultrasound-based visualization of muscle deformation. The direct comparison of the experimentally observed and numerically predicted muscle response demonstrates the predictive capabilities of such anatomically accurate biting models. Differences between molar and incisor biting are investigated; muscle deformation is recorded for three different bite forces in order to capture the effect of increasing muscle fiber recruitment. The three-dimensional (3D) muscle deformation at each bite position and force-level is approximatively reconstructed from ultrasound measurements in five distinct cross-sectional areas (four horizontal and one vertical cross section). The experimental work is accompanied by numerical simulations to validate the predictive capabilities of a constitutive muscle model previously formulated. An anatomy-based, fully 3D model of the masseter muscle is created from magnetic resonance images (MRI) of the same subject. The direct comparison of experimental and numerical results revealed good agreement for maximum bite forces and masseter deformations in both biting positions. The present work therefore presents a feasible in vivo measurement system to validate numerically predicted masseter muscle contractions during mastication.


Author(s):  
D. L. Callahan

Modern polishing, precision machining and microindentation techniques allow the processing and mechanical characterization of ceramics at nanometric scales and within entirely plastic deformation regimes. The mechanical response of most ceramics to such highly constrained contact is not predictable from macroscopic properties and the microstructural deformation patterns have proven difficult to characterize by the application of any individual technique. In this study, TEM techniques of contrast analysis and CBED are combined with stereographic analysis to construct a three-dimensional microstructure deformation map of the surface of a perfectly plastic microindentation on macroscopically brittle aluminum nitride.The bright field image in Figure 1 shows a lg Vickers microindentation contained within a single AlN grain far from any boundaries. High densities of dislocations are evident, particularly near facet edges but are not individually resolvable. The prominent bend contours also indicate the severity of plastic deformation. Figure 2 is a selected area diffraction pattern covering the entire indentation area.


Crystals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 569
Author(s):  
Ana Claudia González-Castillo ◽  
José de Jesús Cruz-Rivera ◽  
Mitsuo Osvaldo Ramos-Azpeitia ◽  
Pedro Garnica-González ◽  
Carlos Gamaliel Garay-Reyes ◽  
...  

Computational simulation has become more important in the design of thermomechanical processing since it allows the optimization of associated parameters such as temperature, stresses, strains and phase transformations. This work presents the results of the three-dimensional Finite Element Method (FEM) simulation of the hot rolling process of a medium Mn steel using DEFORM-3D software. Temperature and effective strain distribution in the surface and center of the sheet were analyzed for different rolling passes; also the change in damage factor was evaluated. According to the hot rolling simulation results, experimental hot rolling parameters were established in order to obtain the desired microstructure avoiding the presence of ferrite precipitation during the process. The microstructural characterization of the hot rolled steel was carried out using optical microscopy (OM), scanning electron microscopy (SEM) and X-ray diffraction (XRD). It was found that the phases present in the steel after hot rolling are austenite and α′-martensite. Additionally, to understand the mechanical behavior, tensile tests were performed and concluded that this new steel can be catalogued in the third automotive generation.


Biology ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 64
Author(s):  
Arnaud Millet

The mechanosensitivity of cells has recently been identified as a process that could greatly influence a cell’s fate. To understand the interaction between cells and their surrounding extracellular matrix, the characterization of the mechanical properties of natural polymeric gels is needed. Atomic force microscopy (AFM) is one of the leading tools used to characterize mechanically biological tissues. It appears that the elasticity (elastic modulus) values obtained by AFM presents a log-normal distribution. Despite its ubiquity, the log-normal distribution concerning the elastic modulus of biological tissues does not have a clear explanation. In this paper, we propose a physical mechanism based on the weak universality of critical exponents in the percolation process leading to gelation. Following this, we discuss the relevance of this model for mechanical signatures of biological tissues.


2019 ◽  
Vol 28 (1) ◽  
pp. 81-88
Author(s):  
Miguel A. González-Montijo ◽  
Hildélix Soto-Toro ◽  
Cristian Rivera-Pérez ◽  
Silvia Esteves-Klomsingh ◽  
Oscar Marcelo Suárez

AbstractHistorically known for being one of the major pollutants in the world, the construction industry, always in constant advancement and development, is currently evolving towards more environmentally friendly technologies and methods. Scientists and engineers seek to develop and implement green alternatives to conventional construction materials. One of these alternatives is to introduce an abundant, hard to recycle, material that could serve as a partial aggregate replacement in masonry bricks or even in a more conventional concrete mixture. The present work studied the use of 3 different types of repurposed plastics with different constitutions and particle size distribution. Accordingly, several brick and concrete mix designs were developed to determine the practicality of using these plastics as partial aggregate replacements. After establishing proper working material ratios for each brick and concrete mix, compression tests as well as tensile tests for the concrete mixes helped determine the structural capacity of both applications. Presented results proved that structural strength can indeed be reached in a masonry unit, using up to a 43% in volume of plastic. Furthermore, a workable structural strength for concrete can be achieved at fourteen days of curing, using up to a 50% aggregate replacement. A straightforward cost assessment for brick production was produced as well as various empirical observations and recommendations concerning the feasibility of each repurposed plastic type examined.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1223
Author(s):  
Elisa Ficarella ◽  
Mohammad Minooei ◽  
Lorenzo Santoro ◽  
Elisabetta Toma ◽  
Bartolomeo Trentadue ◽  
...  

This article presents a very detailed study on the mechanical characterization of a highly nonlinear material, the immature equine zona pellucida (ZP) membrane. The ZP is modeled as a visco-hyperelastic soft matter. The Arruda–Boyce constitutive equation and the two-term Prony series are identified as the most suitable models for describing the hyperelastic and viscous components, respectively, of the ZP’s mechanical response. Material properties are identified via inverse analysis based on nonlinear optimization which fits nanoindentation curves recorded at different rates. The suitability of the proposed approach is fully demonstrated by the very good agreement between AFM data and numerically reconstructed force–indentation curves. A critical comparison of mechanical behavior of two immature ZP membranes (i.e., equine and porcine ZPs) is also carried out considering the information on the structure of these materials available from electron microscopy investigations documented in the literature.


Sign in / Sign up

Export Citation Format

Share Document