scholarly journals A computational bio-chemo-mechanical model of in vivo tissue-engineered vascular graft development

2020 ◽  
Vol 12 (3) ◽  
pp. 47-63
Author(s):  
Ramak Khosravi ◽  
Abhay B Ramachandra ◽  
Jason M Szafron ◽  
Daniele E Schiavazzi ◽  
Christopher K Breuer ◽  
...  

Abstract Stenosis is the primary complication of current tissue-engineered vascular grafts used in pediatric congenital cardiac surgery. Murine models provide considerable insight into the possible mechanisms underlying this situation, but they are not efficient for identifying optimal changes in scaffold design or therapeutic strategies to prevent narrowing. In contrast, computational modeling promises to enable time- and cost-efficient examinations of factors leading to narrowing. Whereas past models have been limited by their phenomenological basis, we present a new mechanistic model that integrates molecular- and cellular-driven immuno- and mechano-mediated contributions to in vivo neotissue development within implanted polymeric scaffolds. Model parameters are inferred directly from in vivo measurements for an inferior vena cava interposition graft model in the mouse that are augmented by data from the literature. By complementing Bayesian estimation with identifiability analysis and simplex optimization, we found optimal parameter values that match model outputs with experimental targets and quantify variability due to measurement uncertainty. Utility is illustrated by parametrically exploring possible graft narrowing as a function of scaffold pore size, macrophage activity, and the immunomodulatory cytokine transforming growth factor beta 1 (TGF-β1). The model captures salient temporal profiles of infiltrating immune and synthetic cells and associated secretion of cytokines, proteases, and matrix constituents throughout neovessel evolution, and parametric studies suggest that modulating scaffold immunogenicity with early immunomodulatory therapies may reduce graft narrowing without compromising compliance.

1996 ◽  
Vol 270 (4) ◽  
pp. L547-L558 ◽  
Author(s):  
M. P. Panchenko ◽  
M. C. Williams ◽  
J. S. Brody ◽  
Q. Yu

Type II and type I receptor serine-threonine kinases (RSTK) are important components of the transmembrane signaling machinery that allow cells to respond to the transforming growth factor-beta (TGF-beta) superfamily of cytokines. We have cloned from rat lung and report here a 3,935-base pair (bp) cDNA encoding a type I RSTK previously identified as R-3 (rat) or ALK-1 (human). Northern blot analysis reveals that the R-3 mRNA is more abundant in lung than in other adult rat tissues. With the use of in situ hybridization, the R-3 transcripts are found exclusively in the pulmonary vessels of all sizes, as well as in aorta, vena cava, and certain blood vessels of kidney, spleen, heart and intestine. In most blood vessels, a higher level of gene expression is found in endothelium than in adjacent smooth muscle. The R-3 transcripts are also found in splenic macrophages, as well as within cells of marginal zone of the splenic lymphoid tissue. In fetal rat lung, the expression of R-3 transcripts differs from the expression patterns of two other type 1 RSTK. The R-3 is expressed in vessels; the activin type IB receptor (R-2) is preferentially expressed in putative developing airways, whereas the TGF-beta type I receptor (R-4) transcripts appear to be ubiquitous. Our data suggest that in vivo R-3 may propagate signaling of TGF-beta in selected cell types. The differential expression of multiple type I receptors within different cell lineages may therefore define cell specific responses to TGF-beta.


2021 ◽  
pp. bjophthalmol-2020-318691
Author(s):  
Zhu Li Yap ◽  
Li-Fong Seet ◽  
Stephanie WL Chu ◽  
Li Zhen Toh ◽  
Farah Ilyana Ibrahim ◽  
...  

AbstractPurposeTo determine the effect of valproic acid (VPA) on bleb morphology and scar characteristics in a rabbit model of minimally invasive glaucoma surgery (MIGS).MethodsNine New Zealand white rabbits were subjected to MIGS with intraoperative implantation of the PreserFlo MicroShunt. Rabbits were then administered with subconjunctival injections of phosphate buffered saline (PBS) (n=4) or with VPA (n=5). Bleb morphology was examined by slit-lamp biomicroscopy and in vivo confocal microscopy. Postoperative day 28 tissues were examined by immunohistochemical evaluation and label-free multiphoton microscopy to visualise the collagen matrix, by terminal deoxynucleotidyl transferase dUTP nick-end labelling assay and immunofluorescent labelling for Ki67 expression to detect apoptosis and cell growth, and by real-time quantitative PCR to measure Col1a1, Fn, and Smad6 transcript expression.ResultsVPA-treated blebs were detectable on day 28, while the PBS-treated blebs were not detectable by day 14. VPA-treated blebs were diffuse, extended posteriorly with near normal conjunctival vascularity and featured a combination of reticular/blurred stromal pattern with evidence of relatively large stromal cysts. Instead of the deposition of thick, disorganised collagen fibres characteristic of the PBS bleb, the VPA bleb contained conspicuously thinner collagen fibres which were associated with similarly thinner fibronectin fibres. In corroboration, Col1a1 and Fn mRNA expression was reduced in the VPA blebs, while increased Smad6 expression implicated the disruption of the transforming growth factor beta pathway. Apoptosis and cell growth profiles appeared similar with both treatments.ConclusionsThe results support the application of VPA to enhance bleb morphology associated with good bleb function in MIGS with no apparent cytotoxicity.


1988 ◽  
Vol 91 (2) ◽  
pp. 313-318
Author(s):  
T. Lombardi ◽  
R. Montesano ◽  
M.B. Furie ◽  
S.C. Silverstein ◽  
L. Orci

Cultured endothelial cells isolated from fenestrated capillaries express many properties characteristic of their in vivo differentiated phenotype, including the formation of a limited number of fenestrae. In this study, we have investigated whether physiological factors that control cell differentiation might regulate the surface density of fenestrae in capillary endothelial cells. We have found that treatment of the cultures with retinoic acid (10 microM) induces a more than threefold increase in the surface density of endothelial fenestrae, whereas transforming growth factor beta (TGF beta) (2 ng ml-1) causes a sevenfold decrease in the surface density of these structures. These results show that the expression of endothelial fenestrae is susceptible to bidirectional modulation by physiological signals, and suggest that retinoids and TGF beta may participate in the regulation of fenestral density of capillary endothelium in vivo.


1991 ◽  
Vol 173 (5) ◽  
pp. 1121-1132 ◽  
Author(s):  
R A Fava ◽  
N J Olsen ◽  
A E Postlethwaite ◽  
K N Broadley ◽  
J M Davidson ◽  
...  

We have studied the consequences of introducing human recombinant transforming growth factor beta 1 (hrTGF-beta 1) into synovial tissue of the rat, to begin to better understand the significance of the fact that biologically active TGF-beta is found in human arthritic synovial effusions. Within 4-6 h after the intra-articular injection of 1 microgram of hrTGF-beta 1 into rat knee joints, extensive recruitment of polymorphonuclear leukocytes (PMNs) was observed. Cytochemistry and high resolution histological techniques were used to quantitate the influx of PMNs, which peaked 6 h post-injection. In a Boyden chamber assay, hrTGF-beta 1 at 1-10 fg/ml elicited a chemotactic response from PMNs greater in magnitude than that evoked by FMLP, establishing that TGF-beta 1 is an effective chemotactic agent for PMNs in vitro as well as in vivo. That PMNs may represent an important source of TGF-beta in inflammatory infiltrates was strongly suggested by a demonstration that stored TGF-beta 1 was secreted during phorbol myristate acetate-stimulated degranulation in vitro. Acid/ethanol extracts of human PMNs assayed by ELISA contained an average of 355 ng of TGF/beta 1 per 10(9) cells potentially available for secretion during degranulation of PMNs. [3H]Thymidine incorporation in vivo and autoradiography of tissue sections revealed that widespread cell proliferation was triggered by TGF-beta 1 injection. Synovial lining cells and cells located deep within the subsynovial connective tissue were identified as sources of at least some of the new cells that contribute to TGF-beta 1-induced hyperplasia. Our results demonstrate that TGF-beta is capable of exerting pathogenic effects on synovial tissue and that PMNs may represent a significant source of the TGF-beta present in synovial effusions.


2018 ◽  
Vol 9 (4) ◽  
pp. 54 ◽  
Author(s):  
Pouriska Kivanany ◽  
Kyle Grose ◽  
Nihan Yonet-Tanyeri ◽  
Sujal Manohar ◽  
Yukta Sunkara ◽  
...  

Background: Corneal stromal cells (keratocytes) are responsible for developing and maintaining normal corneal structure and transparency, and for repairing the tissue after injury. Corneal keratocytes reside between highly aligned collagen lamellae in vivo. In addition to growth factors and other soluble biochemical factors, feedback from the extracellular matrix (ECM) itself has been shown to modulate corneal keratocyte behavior. Methods: In this study, we fabricate aligned collagen substrates using a microfluidics approach and assess their impact on corneal keratocyte morphology, cytoskeletal organization, and patterning after stimulation with platelet derived growth factor (PDGF) or transforming growth factor beta 1 (TGFβ). We also use time-lapse imaging to visualize the dynamic interactions between cells and fibrillar collagen during wound repopulation following an in vitro freeze injury. Results: Significant co-alignment between keratocytes and aligned collagen fibrils was detected, and the degree of cell/ECM co-alignment further increased in the presence of PDGF or TGFβ. Freeze injury produced an area of cell death without disrupting the collagen. High magnification, time-lapse differential interference contrast (DIC) imaging allowed cell movement and subcellular interactions with the underlying collagen fibrils to be directly visualized. Conclusions: With continued development, this experimental model could be an important tool for accessing how the integration of multiple biophysical and biochemical signals regulate corneal keratocyte differentiation.


Cancers ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 260 ◽  
Author(s):  
Qing Zhang ◽  
Xiaonan Hou ◽  
Bradley Evans ◽  
Jamison VanBlaricom ◽  
Saravut Weroha ◽  
...  

Transforming growth factor beta (TGF-β) signaling has pleiotropic functions regulating cancer initiation, development, and metastasis, and also plays important roles in the interaction between stromal and cancer cells, making the pathway a potential therapeutic target. LY2157299 monohydrate (LY), an inhibitor of TGF-β receptor I (TGFBRI), was examined for its ability to inhibit ovarian cancer (OC) growth both in high-grade serous ovarian cancer (HGSOC) cell lines and xenograft models. Immunohistochemistry, qRT-PCR, and Western blot were performed to study the effect of LY treatment on expression of cancer- and fibroblast-derived genes. Results showed that exposure to TGF-β1 induced phosphorylation of SMAD2 and SMAD3 in all tested OC cell lines, but this induction was suppressed by pretreatment with LY. LY alone inhibited the proliferation, migration, and invasion of HGSOC cells in vitro. TGF-β1-induced fibroblast activation was blocked by LY. LY also delayed tumor growth and suppressed ascites formation in vivo. In addition, independent of tumor inhibition, LY reduces ascites formation in vivo. Using OVCAR8 xenograft specimens we confirmed the inhibitory effect of LY on TGF-β signaling and tumor stromal expression of collagen type XI chain 1 (COL11A1) and versican (VCAN). These observations suggest a role for anti-TGF-β signaling-directed therapy in ovarian cancer.


Development ◽  
1999 ◽  
Vol 126 (1) ◽  
pp. 181-190 ◽  
Author(s):  
M. Nikaido ◽  
M. Tada ◽  
H. Takeda ◽  
A. Kuroiwa ◽  
N. Ueno

It has been an intriguing problem whether the polypeptide growth factors belonging to the transforming growth factor-beta (TGF-beta) superfamily function as direct and long-range signaling molecules in pattern formation of the early embryo. In this study, we examined the mechanism of signal propagation of bone morphogenetic protein (BMP) in the ectodermal patterning of zebrafish embryos, in which BMP functions as an epidermal inducer and a neural inhibitor. To estimate the effective range of zbmp-2, we first performed whole-mount in situ hybridization analysis. The zbmp-2-expressing domain and the neuroectoderm, marked by otx-2 expression, were complementary, suggesting that BMP has a short-range effect in vivo. Moreover, mosaic experiments using a constitutively active form of a zebrafish BMP type I receptor (CA-BRIA) demonstrated that the cell-fate conversion, revealed by ectopic expression of gata-3 and repression of otx-2, occurred in a cell-autonomous manner, denying the involvement of the relay mechanism. We also found that zbmp-2 was induced cell autonomously within the transplanted cells in the host ectoderm, suggesting that BMP cannot influence even the neighboring cells. This result is consistent with the observation that there is no gap between the expression domains of zbmp-2 and otx-2. Taken together, we propose that, in ectodermal patterning, BMP exerts a direct and cell-autonomous effect to fate uncommitted ectodermal cells to become epidermis.


Sign in / Sign up

Export Citation Format

Share Document