scholarly journals Thiocillin and micrococcin exploit the ferrioxamine receptor of Pseudomonas aeruginosa for uptake

Author(s):  
Derek C K Chan ◽  
Lori L Burrows

Abstract Background Thiopeptides are a class of antibiotics that are active against Gram-positive bacteria and inhibit translation. They were considered inactive against Gram-negative bacteria due to their inability to cross the outer membrane. However, we discovered previously that a member of this class, thiostrepton (TS), has activity against Pseudomonas aeruginosa and Acinetobacter baumannii under iron-limiting conditions. TS hijacks the pyoverdine siderophore receptors of P. aeruginosa to cross the outer membrane and synergizes with iron chelators. Objectives To test other thiopeptides for antimicrobial activity against P. aeruginosa and determine their mechanism of uptake, action and spectrum of activity. Methods Eight thiopeptides were screened in chequerboard assays against a mutant of P. aeruginosa PA14 lacking both pyoverdine receptors. Thiopeptides that retain activity against a pyoverdine receptor-null mutant may use alternative siderophore receptors for entry. Susceptibility testing against siderophore receptor mutants was used to determine thiopeptide mechanism of uptake. Results The thiopeptides thiocillin (TC) and micrococcin (MC) use the ferrioxamine siderophore receptor (FoxA) for uptake and inhibit the growth of P. aeruginosa at low micromolar concentrations. The activity of TC required the TonB-ExbBD system used to energize siderophore uptake. TC acted through its canonical mechanism of action of translation inhibition. Conclusions Multiple thiopeptides have antimicrobial activity against P. aeruginosa, countering the historical assumption that they cannot cross the outer membrane. These results demonstrate the potential for thiopeptides to act as antipseudomonal antibiotics.

2020 ◽  
Author(s):  
Derek C. K. Chan ◽  
Lori L. Burrows

ABSTRACTThiopeptides are a class of Gram-positive antibiotics that inhibit protein synthesis. They have been underutilized as therapeutics due to solubility issues, poor bioavailability, and lack of activity against Gram-negative pathogens. We discovered recently that a member of this family, thiostrepton, has activity against Pseudomonas aeruginosa and Acinetobacter baumannii under iron-limiting conditions. Thiostrepton uses pyoverdine siderophore receptors to cross the outer membrane, and combining thiostrepton with an iron chelator yielded remarkable synergy, significantly reducing the minimal inhibitory concentration. These results led to the hypothesis that other thiopeptides could also inhibit growth by using siderophore receptors to gain access to the cell. Here, we screened six thiopeptides for synergy with the iron chelator deferasirox against P. aeruginosa and a mutant lacking the pyoverdine receptors FpvA and FpvB. Our findings suggest that thiopeptides such as thiocillin cross the outer membrane using FoxA, the ferrioxamine siderophore receptor. Other structurally related thiopeptides did not inhibit growth of P. aeruginosa, but had greater potency against methicillin-resistant Staphylococcus aureus than thiostrepton and related thiopeptides. These results suggest that thiopeptide structures have evolved with considerations for target affinity and entry into cells.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Klára Látrová ◽  
Noemi Havlová ◽  
Renata Večeřová ◽  
Dominik Pinkas ◽  
Kateřina Bogdanová ◽  
...  

AbstractLipophosphonoxins (LPPOs) are small modular synthetic antibacterial compounds that target the cytoplasmic membrane. First-generation LPPOs (LPPO I) exhibit an antimicrobial activity against Gram-positive bacteria; however they do not exhibit any activity against Gram-negatives. Second-generation LPPOs (LPPO II) also exhibit broadened activity against Gram-negatives. We investigated the reasons behind this different susceptibility of bacteria to the two generations of LPPOs using model membranes and the living model bacteria Bacillus subtilis and Escherichia coli. We show that both generations of LPPOs form oligomeric conductive pores and permeabilize the bacterial membrane of sensitive cells. LPPO activity is not affected by the value of the target membrane potential, and thus they are also active against persister cells. The insensitivity of Gram-negative bacteria to LPPO I is probably caused by the barrier function of the outer membrane with LPS. LPPO I is almost incapable of overcoming the outer membrane in living cells, and the presence of LPS in liposomes substantially reduces their activity. Further, the antimicrobial activity of LPPO is also influenced by the phospholipid composition of the target membrane. A higher proportion of phospholipids with neutral charge such as phosphatidylethanolamine or phosphatidylcholine reduces the LPPO permeabilizing potential.


2021 ◽  
Vol 22 (10) ◽  
pp. 5328
Author(s):  
Miao Ma ◽  
Margaux Lustig ◽  
Michèle Salem ◽  
Dominique Mengin-Lecreulx ◽  
Gilles Phan ◽  
...  

One of the major families of membrane proteins found in prokaryote genome corresponds to the transporters. Among them, the resistance-nodulation-cell division (RND) transporters are highly studied, as being responsible for one of the most problematic mechanisms used by bacteria to resist to antibiotics, i.e., the active efflux of drugs. In Gram-negative bacteria, these proteins are inserted in the inner membrane and form a tripartite assembly with an outer membrane factor and a periplasmic linker in order to cross the two membranes to expulse molecules outside of the cell. A lot of information has been collected to understand the functional mechanism of these pumps, especially with AcrAB-TolC from Escherichia coli, but one missing piece from all the suggested models is the role of peptidoglycan in the assembly. Here, by pull-down experiments with purified peptidoglycans, we precise the MexAB-OprM interaction with the peptidoglycan from Escherichia coli and Pseudomonas aeruginosa, highlighting a role of the peptidoglycan in stabilizing the MexA-OprM complex and also differences between the two Gram-negative bacteria peptidoglycans.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Mashooq Ahmad Bhat ◽  
Mohamed A. Al-Omar ◽  
Ahmed M. Naglah ◽  
Abdul Arif Khan

A series of pyrazoles derived from the substituted enaminones were synthesized and were evaluated for antimicrobial activity. All the compounds were characterized by the spectral data and elemental analysis. The synthesized compounds were initially screened for their antimicrobial activity against ATCC 6538, NCTC 10400, NCTC 10418, and ATCC 27853. During initial screening, compounds (P1, P6, and P11) presented significant antimicrobial activity through disc diffusion assay. These compounds were further evaluated for antimicrobial activity at different time points against Gram-positive and Gram-negative bacteria and presented significant activity for 6 hours. The activity was found to be greater against Gram-positive bacteria. In contrast at 24 hours, the activity was found only against Gram-positive bacteria except compound (P11), showing activity against both types of bacteria. Compound (P11) was found to have highest activity against both Gram-positive and Gram-negative bacteria.


2021 ◽  
Vol 2 (2) ◽  
Author(s):  
Eti Nurwening Sholikhah ◽  
Maulina Diah ◽  
Mustofa ◽  
Masriani ◽  
Susi Iravati ◽  
...  

Pycnarrhena cauliflora (Miers.) Diels., local name sengkubak, is one of indigenous plants from West Kalimantan that has been used as natural flavor. Pycnorrhena cauliflora is one of species of Menispermaceae family which is rich in bisbenzylisoquinoline alkaloids. This alkaloids are known to have various biological activities including antiprotozoal, antiplasmodial, antifungal and antibacterial activities. This study aimed to investigate antimicrobial activity of  the P. cauliflora (Miers.) Diels. methanolic extracts against gram-positive and gram-negative bacteria. The methanolic extract of P. cauliflora (Miers.) Diels., root, leaf and stem were prepared by maceration. The disk-diffusion method was then used to determine the antimicrobial activity of the extracts against Streptococcus pyogenes, S. mutants, Staphylococcus aureus, S. epidermidis, Salmonella typhi, Shigella flexneri, Pseudomonas aeruginosa and Escherichia coli after 18-24 h incubation at 37 oC. Amoxicillin was used as positive control for gram-positive bacteria and ciprofloxacin was used as gram-negative bacteria. The inhibition zones were then measured in mm. Analysis were conducted in duplicates. The results showed in general the methanolic extracts of P. cauliflora (Miers.) Diels. root (inhibition zone diameter= 10-23 mm) were more active than that leaf (0-15 mm) and stem (0-17 mm) extracts against gram-positive bacteria. The zone inhibition diameter of amoxicillin as positive control was 8-42 mm. In addition, the methanolic extracts of P. cauliflora (Miers.) Diels. root (12-17 mm) were also more active than that leaf (0-12 mm) and stem (0-12 mm) extracts against gram-negative bacteria. The zone inhibition diameter of ciprofloxacin as positive control was 33-36 mm. In conclusion, the methanolic extract of P. caulifloria (Miers.) Diels. root is the most extract active against both gram-positive and gram-negative bacteria. Further study will be focused to isolate active compounds in the methanolic extract of the root.


2021 ◽  
Vol 12 (4) ◽  
pp. 2383-2388
Author(s):  
Suguna Selvakumaran ◽  
Kayathri Marimuthu ◽  
Thiruvany Poopalan ◽  
Kalaiyarasi Tamil Selvan ◽  
Nozieana Khairuddin

Silver nanoparticles have attracted high attention worldwide for their various applications. The physiochemical parameters such as temperature, media, mixing ratio affect the rate of synthesis of silver nanoparticles and their yield. Thus, optimization of these physiochemical parameters is needed to enhance the production of silver nanoparticles. In this study, silver nanoparticles were synthesized using Aspergillus niger culture supernatant. The produced silver nanoparticles were characterized using UV-visible Spectrophotometer at 200 nm to 700 nm, which had a peak at 450 nm, indicates the formation of silver nanoparticles. It was found that Sabouraud Dextrose Broth (SDB) as optimum media, 40 ml of supernatant and 10 ml of silver nitrate as optimum mixing ratio and 65°C as optimum temperature to produce silver nanoparticles. The optimized silver nanoparticles were subjected to antimicrobial activity, and it was found that it is highly effective towards gram-negative bacteria than gram-positive bacteria where the zone of inhibition for Escherichia coli was  7 ± 2.7 mm and 5.3 ± 2.1 mm for Staphylococcus aureus.


2016 ◽  
Vol 78 (3-2) ◽  
Author(s):  
Nor Syafawani Sarah Md Saad ◽  
Nik Ahmad Nizam Nik Malek ◽  
Chun Shiong Chong

The aim of this research was to determine the antimicrobial activity of kaolinite modified with antimicrobial compounds against Gram positive and Gram negative bacteria. Copper kaolinite (Cu-kaolinite) was prepared by loading raw kaolinite with copper nitrate trihydrate (CuNO3) while surfactant modified Cu-kaolinite (SM-Cu-kaolinite) was prepared by adding cationic surfactants hexadecyltrimethyl ammonium (HDTMA) on Cu-Kaolinite. Samples was characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analyzer. The antimicrobial activity of the samples was tested against Gram negative bacteria (Escherichia coli ATCC 11229 and Pseudomonas aeruginosa ATCC 15442), and Gram positive bacteria (Staphylococcus aureus ATCC 6538 and Enterococcus faecalis ATCC 29212) through disc diffusion technique (DDT) and minimum inhibition concentration (MIC). The results showed that the antimicrobial activity of Cu-kaolinite increased after modified with HDTMA due to the synergistic effects of Cu ions and HDTMA molecules on the kaolinite. The antimicrobial activity for surfactant modified Cu-kaolinite was greater for Gram positive bacteria compared to Gram negative bacteria. In conclusion, the attachment of HDTMA on Cu-kaolinite contributed to the enhanced antimicrobial activity against wide spectrum of bacteria (Gram positive and Gram negative bacteria).


2008 ◽  
Vol 3 (7) ◽  
pp. 1934578X0800300 ◽  
Author(s):  
Velizar Gochev ◽  
Katrin Wlcek ◽  
Gerhard Buchbauer ◽  
Albena Stoyanova ◽  
Anna Dobreva ◽  
...  

In the present study we evaluated the composition and antimicrobial activity of various rose oils from Bulgaria, Turkey, Morocco, Iran and China against three Gram-positive, three Gram-negative bacteria and two yeasts. The composition of the studied essential oils was determined by GC and GC/MS. Citronellol was the major compound of all the oil samples: 31.7% (Chinese oil); 32.6% (Iranian oil); 33.6% (Moroccan oil); 34.9% (Bulgarian oil) and 38,7 % (Turkish oil). For the Bulgarian oil we could determine the highest activity against all microorganisms. Bacillus cereus ATCC 11778 was the most sensitive strain to Bulgarian rose oil (MCC 128 μg/mL) and Pseudomonas aeruginosa ATCC 9627 and P. fluorescens were more resistible strains (MCC 4096 μg/mL). Antimicrobial activity of rose oils is mainly due to the action of oxygenated acyclic monoterpenes citronellol, geraniol, nerol and linalool, their acetate derivatives and the phenolic compound eugenol.


2002 ◽  
Vol 30 (4) ◽  
pp. 702-705 ◽  
Author(s):  
I.J. Schalk ◽  
M. A. Abdallah ◽  
F. Pattus

Various biochemical and biophysical studies have demonstrated the existence of a novel iron-uptake mechanism in Pseudomonas aeruginosa, different from that generally described for ferrichrome and ferric-enterobactin in Escherichia coli. This new iron-uptake mechanism involves all the proteins generally reported to be involved in the uptake of ferric-siderophore complexes in Gram-negative bacteria (i.e. the outer membrane receptor, periplasmic binding protein and ATP-binding-cassette transporter), but differs in the behaviour of the siderophore. One of the key features of this process is the binding of iron-free pyoverdin to the outer membrane receptor FpvA in conditions of iron deficiency.


2018 ◽  
Vol 86 (4) ◽  
Author(s):  
J. Wendler ◽  
D. Ehmann ◽  
L. Courth ◽  
B. O. Schroeder ◽  
N. P. Malek ◽  
...  

ABSTRACTThe antimicrobial peptide human β-defensin 1 (hBD1) is continuously produced by epithelial cells in many tissues. Compared to other defensins, hBD1 has only minor antibiotic activity in its native state. After reduction of its disulfide bridges, however, it becomes a potent antimicrobial agent against bacteria, while the oxidized native form (hBD1ox) shows specific activity against Gram-negative bacteria. We show that the killing mechanism of hBD1ox depends on aerobic growth conditions and bacterial enzymes. We analyzed the different activities of hBD1 using mutants ofEscherichia colilacking one or more specific proteins of their outer membrane, cytosol, or redox systems. We discovered that DsbA and DsbB are essential for the antimicrobial activity of hBD1ox but not for that of reduced hBD1 (hBD1red). Furthermore, our results strongly suggest that hBD1ox uses outer membrane protein FepA to penetrate the bacterial periplasm space. In contrast, other bacterial proteins in the outer membrane and cytosol did not modify the antimicrobial activity. Using immunogold labeling, we identified the localization of hBD1ox in the periplasmic space and partly in the outer membrane ofE. coli. However, in resistant mutants lacking DsbA and DsbB, hBD1ox was detected mainly in the bacterial cytosol. In summary, we discovered that hBD1ox could use FepA to enter the periplasmic space, where its activity depends on presence of DsbA and DsbB. HBD1ox concentrates in the periplasm in Gram-negative bacteria, which finally leads to bleb formation and death of the bacteria. Thus, the bacterial redox system plays an essential role in mechanisms of resistance against host-derived peptides such as hBD1.


Sign in / Sign up

Export Citation Format

Share Document