Predicting the Environmental Distribution of Compounds with Unknown Physicochemical Properties from Known Pesticide Properties

1992 ◽  
Vol 75 (5) ◽  
pp. 916-924
Author(s):  
Surya S Prasad

Abstract Disposing of pesticides improperly can have environmental consequences. This study examines those properties discussed in published literature or derived from semiempirical mathematical models that are most likely to affect pesticides' environmental distribution, then assesses their migration between environmental media (soil, water, air, and biota). In particular, it examines how pesticide characteristics such as water solubility, molecular weight, bioconcentration, volatility, and soil adsorption affect soil-to-water mobility, water-to-air dissipation, and water-to-biota accumulation when present in the environmental medium of preferred residence. The study concludes that chemicals that have low water solubilities tend to adsorb to soil, those that have low vapor pressures tend to dissipate slowly from water, and those that have relatively high octanol-to-water partition coefficients or low water solubility have a high potential for bioconcentration. Under these situations, environmental restoration might best be achieved by removal of the contamination at the source. By drawing analogies from these findings, researchers should be able to predict the mobility of pesticides belonging to a particular category or family of compounds with unknown physicochemical properties, determine the harm that might result from their distribution under worst-case scenarios, and recommend ways to restore the environment. Received

2011 ◽  
Vol 8 (4) ◽  
pp. 389 ◽  
Author(s):  
Zhanyun Wang ◽  
Matthew MacLeod ◽  
Ian T. Cousins ◽  
Martin Scheringer ◽  
Konrad Hungerbühler

Environmental contextPoly- and perfluorinated alkyl substances (PFASs) include a wide range of individual compounds that are used in many consumer products, but only a few physicochemical property data are available for these chemicals. Here we provide estimates of physicochemical properties (vapour pressure, water solubility, etc.) of 130 individual PFASs derived with a quantum-chemical model. Our results provide insight into the effect of molecular structure on the properties of PFASs and a basis for estimating the environmental partitioning and fate of PFASs. AbstractRecently, there has been concern about the presence of poly- and perfluorinated alkyl substances (PFASs) in the environment, biota and humans. However, lack of physicochemical data has limited the application of environmental fate models to understand the environmental distribution and ultimate fate of PFASs. We employ the COSMOtherm model to estimate physicochemical properties for 130 individual PFASs, namely perfluoroalkyl acids (including branched isomers for C4–C8 perfluorocarboxylic acids), their precursors and some important intermediates. The estimated physicochemical properties are interpreted using structure-property relationships and rationalised with insight into molecular interactions. Within a homologous series of linear PFASs with the same functional group, both air–water and octanol–water partition coefficient increase with increasing perfluorinated chain length, likely due to increasing molecular volume. For PFASs with the same perfluorinated chain length but different functional groups, the ability of the functional group to form hydrogen bonds strongly influences the chemicals’ partitioning behaviour. The partitioning behaviour of all theoretically possible branched isomers can vary considerably; however, the predominant isopropyl and monomethyl branched isomers in technical mixtures have similar properties as their linear counterparts (differences below 0.5log units). Our property estimates provide a basis for further environmental modelling, but with some caveats and limitations.


2018 ◽  
Vol 18 (9) ◽  
pp. 797-807 ◽  
Author(s):  
Paula dos Passos Menezes ◽  
Francielly de Oliveira Araujo ◽  
Tatianny Araujo Andrade ◽  
Igor Araujo Santos Trindade ◽  
Heitor Gomes de Araujo-Filho ◽  
...  

Background: Some research studies have shown that Lippia pedunculosa essential oil (EOLP) has interesting biological activities. However, its low water solubility is the main challenge to achieve its therapeutic potential. In this context, Cyclodextrins (CDs) have been widely used in order to overcome this problem due to your capability to improve the physicochemical properties of drugs. Objective: In this perspective, the main goal of this study was to investigate how the improvement of the physicochemical properties of inclusion complexes (EOLP and β-CD) enhance the antinociceptive effect in mice. Methods: To achieve that, we prepared samples by Physical Mixture (PM), Paste Complexation (PC) and Slurry Complexation (SC) methods, followed by their physicochemical characterization. In addition, it was evaluated if the use of β-CD enhances the antinociceptive effect of EOLP in mice. Results: The analysis showed that rotundifolone (72.02%) was the major compound of EOLP and we found out based on DSC results that β-CD protected it from oxidation. In addition, TG techniques demonstrated that the best inclusion methods were PC and SC, due to their greater weight loss (10.8 and 11.6%, respectively) in the second stage (171-312°C), indicating that more complexed oil was released at the higher temperature than oil free. Other characteristics, such as changes in the typical crystalline form, and reduced particle size were observed by SEM and laser diffraction, respectively. The SC was the most effective complexation method, once the presence of rotundifolone was detected by FTIR. Based on that, SC method was used in all mice tests. In this regard, the number of paw licks was reduced for both compounds (all doses), but EOLP was more effective in reducing the nociceptive behavior. Conclusion: Therefore, CDs seem not to be a good tool to enhance the pharmacological properties of EOs rich in peroxide compounds such as rotundifolone.


1992 ◽  
Vol 57 (8) ◽  
pp. 1739-1746
Author(s):  
Katarína Škvareninová ◽  
Štefan Baláž ◽  
Ernest Šturdík ◽  
Miroslav Veverka ◽  
Jana Adamcová ◽  
...  

In the series of cephalosporin derivatives, consisting of eight 7-(R1-CH2-CO-NH)cephalosporanic acids and of seven analogical compounds with 3-acetoxymethyl replaced by 3-CH3, physicochemical properties, which are expected to play a role in their antibacterial effects (the transport rate parameters and partition coefficients in the systems 1-octanol-water and 1-octanol-buffer, dissociation constants of the 4-carboxyl group, reactivity towards L-glutathione imitating the nucleophilic groups of the cell components and hydrolysis rate parameters), were determined. Linear dependences were observed between the partition coefficients and the π-constants of the varying substituents as well as between reactivity towards SH-groups of L-glutathione and OH-groups. The relationship between the transport rate parameters and partition coefficients, both measured in buffered as well as non-buffered system, was described by a common non-linear equation.


2021 ◽  
Vol 12 (1S) ◽  
pp. 62-73
Author(s):  
Nor Anis Shafira Rosidi ◽  
Asmaliza Abdul Ghani @ Yaacob ◽  
Nurhayati Yusof ◽  
Norzaida Yusof

Large production of red dragon fruit by-products, which are frequently discarded from food industry has become a major waste problem. Converting this waste into useful products with good physicochemical properties could solve the pollution issues. Thus, a study was carried out to investigate the effect of blanching and drying temperatures on physicochemical properties of red dragon fruit peel powder. Dragon fruit peel was pre-treated with hot water at 90 °C for 2 minutes before being dried in hot air oven dryer at 50 °C, 60 °C and 70 °C. Results showed that the powdered sample of blanched and dried at 50 °C had significantly higher fiber, water activity and moisture content than those of unblanched/blanched and dried at 60 °C and 70 °C. Result also showed that the colour of this powder was similar to the fresh dragon fruit peel. When dried at 50 °C, the unblanched and blanched powders exhibited a slightly higher water solubility index compared to those dried at 60 °C and 70 °C. Based on the evaluation of bulk and tapped densities, all powders having the Carr Index in the range of values between 20 and 28 thus can be categorised as slightly poor flowing. For all conditions studied, powder that was blanched and dried at 50 °C was the best condition as it contained the highest amount of fiber with good physicochemical properties.


2021 ◽  
Author(s):  
Ishita Chakraborty ◽  
Indira Govindaraju ◽  
Sintu Rongpipi ◽  
Krishna Kishore Mahato ◽  
Nirmal Mazumder

AbstractStarchy food items such as rice and potato with high carbohydrate content raise blood sugar. Hence, consuming low glycaemic foods is one tool to keep diabetes under control. In this study, potato and brown rice (Njavara rice) starches were subjected to hydrothermal treatments: heat moisture treatment (HMT) and annealing (ANN) to develop starch-based food products fit for consumption by diabetic patients. The effects of hydrothermal treatments on physicochemical properties and in-vitro enzymatic digestion of starch were determined. It was observed that hydrothermal treatments decreased the swelling power (SP)% and increased the water solubility (WS)% of the native starches. Native potato starch (PSN) showed a high SP of 80.33%, while annealed potato starch (PANN) and heat moisture treated potato starch (PHMT) showed SP reduced to 65.33% and 51.66%, respectively. Similarly, the SP % reduced from 64.33% in native brown rice (BRN) to 44.66% in annealed brown rice (BRANN) and 38.33% in heat moisture treated brown rice (BRHMT). WS % increased from 32.86% in PSN to 36.66% in PANN and 40.66% in PHMT. In BRN, the WS % increased from 14.0% to 14.66% in BRANN and 18.33% in BRHMT. Amylose content increased from 13.23% and 14.56% in PSN and BRN to 16.14% in PANN 17.99% in PHMT, 17.33% in BRANN, and 18.98% in BRHMT. The PSN crystallinity index reduced from 33.49 to 30.50% in PANN and 32.60% in PHMT. At 12 h of enzymatic digestion, it was found that the degree of hydrolysis (DoH) of PHMT (31.66%) and PANN (36.82%) reduced when compared to PSN (41.09%). Similarly, BRHMT exhibited the lowest DoH at 12 h compared to BRANN (29.24%) and BRN (35.48%). This study highlights the importance of hydrothermal treatments on starch in developing low glycaemic index commercial starch-based food products.


2019 ◽  
Author(s):  
Chetan Sharma ◽  
Baljit Singh ◽  
Syed Zameer Hussain ◽  
Savita Sharma

PR 106 and SML 668 cultivars of rice and mung bean respectively, were studied for their potential to serve as a nutritious snack with improved protein quality and quantity. The effect of extrusion conditions, including feed moisture content (14–18%), screw speed (400–550 rpm) and barrel temperature (130–170°C) on the physicochemical properties (bulk density, water absorption index (WAI), water solubility index (WSI) and hardness) was investigated. The replacement of rice flour at 30% level with mung bean flour for making extruded snacks was evaluated. Pasting temperature increased (84–93 °C) while peak viscosity (2768–408 cP), hold viscosity (2018–369 cP), breakdown (750–39 cP), setback (2697–622 cP) and final viscosity (4715–991 cP) decreased with increasing mung bean flour addition. Increasing feed moisture lowered the specific mechanical energy (SME), WAI and WSI of extrudates whereas increased bulk density and hardness. Higher screw speed had linear positive effect on SME of extruder and negative linear effect on WAI. Positive curvilinear quadratic effect of screw speed was also observed on WSI and density. Higher barrel temperature linearly decreased the SME, density and hardness of extrudates. Developed extrusion cooked rice-mung bean snacks with increased protein content and improved protein quality along with higher dietary fiber and minerals have good potential in effectively delivering the nutrition to the population.


Molecules ◽  
2018 ◽  
Vol 23 (9) ◽  
pp. 2132 ◽  
Author(s):  
Juan Wang ◽  
Ke Guo ◽  
Xiaoxu Fan ◽  
Gongneng Feng ◽  
Cunxu Wei

The dry root tuber of Apios fortunei contained about 75% starch, indicating that it is an important starch resource. Starch displayed spherical, polygonal, and ellipsoidal granules with central hila. Granule sizes ranged from 3 to 30 μm with a 9.6 μm volume-weighted mean diameter. The starch had 35% apparent amylose content and exhibited CA-type crystalline structure with 25.9% relative crystallinity. The short-range ordered degree in the granule external region was approximately 0.65, and the lamellar thickness was approximately 9.6 nm. The swelling power and water solubility began to increase from 70 °C and reached 28.7 g/g and 10.8% at 95 °C. Starch had typical bimodal thermal curve in water with gelatinization temperatures from 61.8 to 83.9 °C. The 7% (w/w) starch-water slurry had peak, hot, breakdown, final, and setback viscosities of 1689, 1420, 269, 2103, and 683 mPa s, respectively. Rapidly digestible starch, slowly digestible starch, and resistant starch were 6.04%, 10.96%, and 83.00% in native starch; 83.16%, 15.23%, and 1.61% in gelatinized starch; and 78.13%, 17.88%, and 3.99% in retrograded starch, respectively. The above physicochemical properties of A. fortunei starch were compared with those of maize A-type starch, potato B-type starch, and pea C-type starch. The hierarchical cluster analysis based on starch structural and functional property parameters showed that A. fortunei and pea starches had similar physicochemical properties and were more related to maize starch than potato starch.


Sign in / Sign up

Export Citation Format

Share Document