scholarly journals Determination of Deoxynivalenol in Processed Foods

2010 ◽  
Vol 93 (4) ◽  
pp. 1236-1242 ◽  
Author(s):  
Mary W Trucksess ◽  
Lei Bao ◽  
Carol M Weaver ◽  
Kevin D White

Abstract Deoxynivalenol (DON), commonly referred to as vomitoxin, belongs to a class of naturally occurring mycotoxins produced by Fusarium fungi. The presence of DON in foods is a human health concern. The frequency of occurrence of DON in wheat is high, although cleaning prior to milling can reduce DON concentration in final products, and food processing can partially degrade the toxin. This paper describes a method for the determination of DON in some major wheat food products, including bread, breakfast cereals, pasta, pretzels, and crackers. Test samples containing 5 polyethylene glycol were extracted with water. After blending and centrifuging, the supernatant was diluted with water and filtered through glass microfiber filter paper. The filtrate was then passed through an immunoaffinity column and the toxins eluted with methanol. The toxins were then subjected to RPLC separation and UV detection. The accuracy and repeatability characteristics of the method were determined. Recoveries of DON spiked at levels from 0.5 to 1.5 g/g in the five processed foods were >70. SD and RSD values ranged from 2.0 to 23.5 and from 2.0 to 23.2, respectively. HorRat values were <2 for all of the matrixes examined. The method was found to be acceptable for the matrixes examined. LC/MS/MS with multiple-reaction monitoring was used to confirm the identity of DON in naturally contaminated test samples.

2010 ◽  
Vol 93 (3) ◽  
pp. 936-942 ◽  
Author(s):  
Lei Bao ◽  
Mary W Trucksess ◽  
Kevin D White

Abstract Edible oils are consumed directly, and used as ingredients in food, soaps, and skin products. However, oils such as olive oil, peanut oil, and sesame oil could be contaminated with aflatoxins, which are detrimental to human and animal health. A method using immunoaffinity column cleanup with RPLC separation and fluorescence detection (FLD) for determination of aflatoxins (AF) B1, B2, G1, and G2 in olive oil, peanut oil, and sesame oil was developed and validated. Test samples were extracted with methanolwater (55 + 45, v/v). After shaking and centrifuging, the lower layer was filtered, diluted with water, and filtered through glass microfiber filter paper. The filtrate was then passed through an immunoaffinity column, and the toxins were eluted with methanol. The toxins were then subjected to RPLC/FLD analysis after postcolumn UV photochemical derivatization. The accuracy and repeatability characteristics of the method were determined. Recoveries of AFB1 spiked at levels from 1.0 to 10.0 g/kg in olive oil, peanut oil, and sesame oil ranged from 82.9 to 98.6. RSDs ranged from 0.6 to 8.9. HorRat values were <0.2 for all of the matrixes tested. Recoveries of AF spiked at levels from 2.0 to 20.0 g/kg ranged from 87.7 to 102.2. RSDs ranged from 1.3 to 12.6. HorRat values were <0.4 for all of the matrixes tested. LC/MS/MS with multiple-reaction monitoring was used to confirm the identities of aflatoxins in a naturally contaminated peanut oil.


2017 ◽  
Vol 33 (7) ◽  
pp. 863-867 ◽  
Author(s):  
Maya KAMAO ◽  
Yoshihisa HIROTA ◽  
Yoshitomo SUHARA ◽  
Naoko TSUGAWA ◽  
Kimie NAKAGAWA ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Siyuan Chen ◽  
Jianshe Ma ◽  
Xianqin Wang ◽  
Quan Zhou

In this paper, a UPLC-MS/MS method was developed for the determination of ropivacaine and its metabolite 3-hydroxy ropivacaine in cerebrospinal fluid. The cerebrospinal fluid was processed by ethyl acetate liquid-liquid extraction. The multiple reaction monitoring (MRM) mode was used for quantitative analysis by monitoring the transitions of m/z 275.3 → 126.2 for ropivacaine, m/z 291.0 → 126.0 for 3-hydroxy ropivacaine, and m/z 290.2 → 198.2 for the internal standard. Standard curves for ropivacaine and 3-hydroxy ropivacaine in cerebrospinal fluid were conducted over the concentration range of 0.2–2000 ng/mL, demonstrating excellent linearity, and the lower limit of quantification was 0.2 ng/mL. The intraday precision of ropivacaine and 3-hydroxy ropivacaine was less than 11%, while the interday precision was less than 7%. The accuracy ranged between 87% and 107%, the average extraction efficiency was higher than 79%, and the matrix effect was between 89% and 98%. The developed method was then applied to a case of suspected poisoning of ropivacaine.


Sign in / Sign up

Export Citation Format

Share Document