scholarly journals 81 Effects of NeutraPath™ on growth performance, diarrhea and fecal-hemolytic coliforms of weaned pigs challenged with an enterotoxigenic Escherichia coli

2020 ◽  
Vol 98 (Supplement_3) ◽  
pp. 4-5
Author(s):  
LeAnn Johnston ◽  
Peng Ji ◽  
Hongyu Xue

Abstract This study was aimed to investigate NeutraPath’s effects on performance, diarrhea, and fecal β-hemolytic coliforms of weaned pigs infected with enterotoxigenic E. coli (ETEC). NeutraPath, a blend of essential oils, fatty acids and toxin-adsorbing minerals has bacteriostatic/bactericidal effects. Thirty-six weanling pigs (21 d old; average BW 6.88 kg; 18 barrows, 18 gilts) blocked by weight and gender, were assigned to one of three dietary treatments in an RCB (1 pig/pen; 12 replicates/treatment). Treatments were control or dietary supplementation with 0.25% or 0.50% NeutraPath. This study lasted 28 d with 7 d before and 21 d after the first E. coli inoculation (d 0). All pigs were orally inoculated with 1010 cfu F18+ ETEC/3-mL dose for 3 consecutive d. Growth performance data was obtained on d 0, d 7, d 14 and d 21 post-inoculation (PI). On d 2 PI, fecal samples were obtained and plated on blood and MacConkey agars to determine total coliforms and β-hemolytic coliforms. Treatment effects were analyzed using one-way ANOVA or repeated measures ANOVA followed by post hoc Tukey’s test. The 0.5% NeutraPath treatment resulted in a 12.7% and a 14.0% increase (P < 0.05) in BW (relative to initial BW at d 0 PI) at d 7 PI and d 21 PI, respectively. Pigs fed either NeutraPath dose had greater overall growth during the 28-d period (P< 0.05) producing improvements in feed efficiency during d 14-21 PI (P< 0.05). Feeding 0.25% NeutraPath improved (P < 0.05) diarrhea kinetics d 0-11 PI, Diarrhea score (DS) area under the curve for d 0-11 and d 0-21 PI, moderate (DS≥3) and severe (DS≥4) diarrhea incidence and tended (P=0.08) to lower the percentage of fecal β-hemolytic coliforms compared to control. In conclusion, NeutraPath supplementation can enhance growth performance and decrease incidence of severe diarrhea in weaned pigs challenged with F18+ ETEC.

2021 ◽  
Vol 99 (Supplement_1) ◽  
pp. 90-90
Author(s):  
Kwangwook Kim ◽  
Yijie He ◽  
Cynthia Jinno ◽  
Seijoo Yang ◽  
Xunde Li ◽  
...  

Abstract The objective of this experiment was to investigate dietary supplementation of oligosaccharide-based polymer on growth performance, diarrhea, and fecal β-hemolytic coliforms of weaned pigs experimentally infected with a pathogenic F18 Escherichia coli (E. coli). Forty-eight pigs (7.23 ± 1.11 kg BW) were individually housed in disease containment rooms and randomly allotted to one of four treatments with 12 replicate pigs per treatment. The four dietary treatments were a nursery basal diet (control), and 3 additional diets supplemented with 50 mg/kg Mecadox (AGP), 10 or 20 mg/kg of oligosaccharide-based polymer. The experiment lasted 18 d [7 d before and 11 d after the first inoculation (d 0)]. The doses of F18 E. coli inoculum were 1010 cfu/3 mL oral dose daily for 3 days. Growth performance was measured on d -7 to 0 before inoculation, and d 0 to 5 and 5 to 11 post-inoculation (PI). Diarrhea score (DS; 1, normal, to 5, watery diarrhea) was daily recorded for each pig. Fecal samples were collected on d 2, 5, 8, and 11 PI to test the percentage of β-hemolytic coliforms in total coliforms. All data were analyzed by ANOVA using the PROC MIXED of SAS with pig as the experimental unit. Inclusion of oligosaccharide-based polymer linearly increased (P < 0.05) ADFI on d 0 to 5 PI, and feed efficiency on d 0 to 5 PI and d 5 to 11 PI (P = 0.07), compared with the control. Supplementation of AGP or oligosaccharide-based polymer reduced (P < 0.01) frequency of diarrhea of pigs from d 0 to 11 PI. No differences were observed in overall growth performance and percentage of fecal β-hemolytic coliforms on d 8 PI among pigs in AGP and oligosaccharide-based polymer treatments. In conclusion, supplementation of oligosaccharide-based polymer enhanced feed efficiency and reduced diarrhea of weaned pigs infected with a pathogenic E. coli.


2019 ◽  
Vol 97 (Supplement_2) ◽  
pp. 84-85
Author(s):  
Sue Sinn ◽  
Ran Song ◽  
Dana Beckler ◽  
Rob Musser ◽  
Kim Friesen

Abstract A mineral-based feed additive, NutriQuest Protect™, was evaluated in five artificial Enterotoxigenic Escherichia coli (ETEC) challenge experiments to determine the effects on pig growth performance, fecal consistency and immune response. The five experiments were conducted following a similar procedure and utilized a total of 232 weanling pigs (19 d of age) assigned to one of three experimental treatments: non-challenged control (NC), challenged control (CC), and challenged pigs fed Protect at 4.0 g/kg (CP) with 36, 36, and 44 pens per treatment, respectively. Pharmacological ZnO or medications were not included in any diets. Pigs were allowed a 7-d adaptation period following weaning, orally inoculated with E. coli K88 or F18 on 0 d post-inoculation (dpi) and 1-dpi. Studies were concluded on 4-dpi. Pig BW and feed disappearance were measured on 0-dpi and 4-dpi. Serum samples were collected on 0 and 4-dpi to measure porcine proinflammatory cytokines. Fecal scores were measured daily over the challenge period. Data from the five experiments were compiled for meta-analysis using the MIXED procedure of SAS. The NC pigs had a greater ADG (0.09 vs. -0.01 kg/d, P = 0.002), ADFI (0.24 vs. 0.21 kg/d, P = 0.09), and final BW (6.8 vs. 6.5 kg, P < 0.05). Diarrhea frequency was significantly higher in CC pigs compared with pigs on CP and NC treatments (28.5 vs. 18.7 vs. 5.3%, P < 0.05). Results from the five experiments suggest that NutriQuest Protect™ improves growth performance and reduces inflammation and diarrhea in weaned pigs artificially challenged with E. coli K88 or F18.


2019 ◽  
Vol 97 (Supplement_2) ◽  
pp. 79-80
Author(s):  
Yijie He ◽  
Kwangwook Kim ◽  
Cynthia Jinno ◽  
Lauren Kovanda ◽  
Seijoo Yang ◽  
...  

Abstract The objective of this experiment was to investigate the effects of Bacillus subtilis on growth performance, diarrhea and fecal β-hemolytic coliforms of weaned pigs experimentally infected with a strain of E. coli (F18, express genes of LT, STb, and SLT 2 toxins). Weaned pigs (n = 48, 6.17 ± 0.36 kg BW) were individually housed in disease containment rooms and randomly allotted to one of four dietary treatments: negative control (NC, control diet without E. coli challenge), positive control (PC, control diet with E. coli challenge), and supplementation of 50 mg/kg of carbadox or 500 mg/kg of Bacillus subtilis probiotics. The experiment lasted 28 d with 7 d before and 21 d after the first E. coli inoculation. The F18 E. coli were given to pigs at 1010 CFU/3 mL dose for three consecutive d. Diarrhea score was daily recorded for each pig to calculate frequency of diarrhea. Fecal samples were collected on d 0, 3, 7, 14, and 21 PI to analyze β-hemolytic coliforms. Data were analyzed using the Mixed Procedure of SAS. Pigs supplemented with carbadox had greater (P < 0.05) body weight on d 7, 14, and 21 PI than pigs in the PC and probiotics group. Supplementation of probiotics enhanced pig body weight on d 21 PI, compared with the PC. E. coli challenge reduced (P < 0.05) ADG and feed efficiency from d 0 to 21 PI, while supplementation of antibiotics or probiotics enhanced ADG and feed efficiency from d 0 to 21 PI. Pigs in carbadox and probiotics groups had reduced (P < 0.05) frequency of diarrhea throughout the experiment and fecal β-hemolytic coliforms on d 7 PI than pigs in the PC. In conclusion, supplementation of Bacillus subtilis could enhance disease resistance and promote growth performance of weaned pigs under disease challenge condition.


2019 ◽  
Vol 97 (Supplement_2) ◽  
pp. 74-75
Author(s):  
Yijie He ◽  
Kwangwook Kim ◽  
Cynthia Jinno ◽  
Zhaohai Wu ◽  
Rose Whelan ◽  
...  

Abstract The experiment was conducted to investigate the effects of Bacillus spp. on systemic immunity and intestinal health of weaned pigs infected with F18 E. coli. Weaned pigs (n = 36, 7.61 ± 0.40 kg BW) were randomly allotted to one of three treatments: a control diet and two diets supplemented with 500 mg/kg of Bacillus spp. strain 1 (PRO1) or strain 2 (PRO2). The experiment was conducted for 28 d, including 7 d before and 21 d after the first E. coli inoculation (d 0). The doses of F18 E. coli inoculum were 1010 cfu/3 mL oral dose daily for 3 consecutive days. Serum samples were collected on d 0 before inoculation, and d 3, 7, 14, and 21 post-inoculation (PI) to measure inflammatory meditators. All pigs were euthanized on d 21 PI to collect tissue samples for gut morphology, bacterial translocation, and gene expression analysis. Data were analyzed using the Mixed Procedure of SAS. Pigs in PRO1 had reduced (P < 0.05) serum haptoglobin on d 3 and d 6 PI compared with pigs in control. Supplementation of PRO1 or PRO2 reduced (P < 0.05) total coliforms in mesenteric lymph nodes on d 21 PI. Pigs in PRO1 had greater (P < 0.05) ileal villi height than pigs in control. Pigs in PRO2 had greater (P < 0.05) sulfomucin percentage in duodenal villi and greater (P < 0.05) sialomucin percentage in jejunal villi than pigs in control. Supplementation of PRO1 also up-regulated (P < 0.05) MUC2 gene expression in jejunal mucosa but reduced (P < 0.05) COX2 and IL1B gene expression in ileal mucosa on d 21 PI, compared with control. In conclusion, supplementation of Bacillus spp. may reduce systemic inflammation and enhance intestinal health of weaned pigs infected with F18 E. coli.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 286-286
Author(s):  
Kwangwook Kim ◽  
Sungbong Jang ◽  
Yanhong Liu

Abstract Our previous studies have shown that supplementation of low-dose antibiotic growth promoter (AGP) exacerbated growth performance and systemic inflammation of weaned pigs infected with pathogenic Escherichia coli (E. coli). The objective of this experiment, which is extension of our previous report, was to investigate the effect of low-dose AGP on gene expression in ileal mucosa of weaned pigs experimentally infected with F18 E. coli. Thirty-four pigs (6.88 ± 1.03 kg BW) were individually housed in disease containment rooms and randomly allotted to one of three treatments (9 to 13 pigs/treatment). The three dietary treatments were control diet (control), and 2 additional diets supplemented with 0.5 or 50 mg/kg of AGP (carbadox), respectively. The experiment lasted 18 d [7 d before and 11 d after first inoculation (d 0)]. The F18 E. coli inoculum was orally provided to all pigs with the dose of 1010 cfu/3 mL for 3 consecutive days. Total RNA [4 to 6 pigs/treatment on d 5; 5 to 7 pigs/treatment on 11 post-inoculation (PI)] was extracted from ileal mucosa to analyze gene expression profiles by Batch-Tag-Seq. The modulated differential gene expression were defined by 1.5-fold difference and a cutoff of P &lt; 0.05 using limma-voom package. All processed data were statistically analyzed and evaluated by PANTHER classification system to determine the biological process function of genes in these lists. Compared to control, supplementation of recommended-dose AGP down-regulated genes related to inflammatory responses on d 5 and 11 PI; whereas, feeding low-dose AGP up-regulated genes associated with negative regulation of metabolic process on d 5, but down-regulated the genes related to immune responses on d 11 PI. The present observations support adverse effects of low-dose AGP in our previous study, indicated by exacerbated the detrimental effects of E. coli infection on pigs’ growth rate, diarrhea and systemic inflammation.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 211-212
Author(s):  
Lauren L Kovanda ◽  
Jungjae Park ◽  
Yijie He ◽  
Sangwoo Park ◽  
Ruochen Wu ◽  
...  

Abstract Enterotoxigenic Escherichia coli (ETEC) F4 and F18 are the two most dominant pathogenic strains in weaned pigs. The objective of this experiment was to test the effects of dietary monobutyrin and monovalerin on performance and systemic immunity of weanling piglets coinfected with F4/F18 ETEC. Twenty weaned pigs (8.21 ± 1.23 kg) were individually housed and were randomly allotted to one of three diets: control (n = 6), 0.1% monobutyrin (n = 7), or 0.1% monovalerin (n = 7). The experiment was conducted 14 days, including 7 days’ adaption and 7 days post-inoculation (PI). On d 0, d 1, and d 2 PI, pigs were inoculated with 0.5 × 109 CFU/1.5 mL each of F4 and F18 ETEC for three consecutive days. Diarrhea score was recorded daily to determine frequency of diarrhea. Piglets and feeders were weighed throughout the trial to analyze growth performance. Fecal cultures from pigs on d 0, 2, and 4 PI were inspected to identify the absence or presence of hemolytic coliforms. Blood was collected on d 0, 4, and 7 PI for complete blood cells count. All data were analyzed by the Proc Mixed of SAS with randomized complete block design. Pigs supplemented with monovalerin and monobutyrin had numerically higher ADG (249 and 282 g/day) from d 0 to d 7 PI than pigs in control (198 g/day). Supplementation of monovalerin reduced (P &lt; 0.05) frequency of diarrhea throughout the experiment. Pigs fed monovalerin had lower (P &lt; 0.05) neutrophil counts on d 4 PI compared with control. Hemolytic coliforms were observed in all fecal cultures from d 2 and d 4 PI, confirming fecal shedding of ETEC. Results of this study indicate the potential benefits of monovalerin supplementation on performance and disease resistance of weaned pigs coinfected with F4 and F8 ETEC.


2020 ◽  
Vol 11 (11) ◽  
pp. 9599-9612
Author(s):  
Lei Liu ◽  
Daiwen Chen ◽  
Bing Yu ◽  
Heng Yin ◽  
Zhiqing Huang ◽  
...  

This study was conducted to explore the protective potential of fructooligosaccharides (FOS) against enterotoxigenic Escherichia coli (ETEC)-induced inflammation and intestinal injury in weaned pigs.


2020 ◽  
Vol 4 (3) ◽  
Author(s):  
Sangwoo Park ◽  
Jung Wook Lee ◽  
Kevin Jerez Bogota ◽  
David Francis ◽  
Jolie Caroline González-Vega ◽  
...  

Abstract This study was conducted to investigate the effects of a direct-fed microbial (DFM) product (Bacillus subtilis strain DSM 32540) in weaned pigs challenged with K88 strain of Escherichia coli on growth performance and indicators of gut health. A total of 21 weaned pigs [initial body weight (BW) = 8.19 kg] were housed individually in pens and fed three diets (seven replicates per diet) for 21 d in a completely randomized design. The three diets were a corn-soybean meal-based basal diet without feed additives, a basal diet with 0.25% antibiotics (neo-Oxy 10-10; neomycin + oxytetracycline), or a basal diet with 0.05% DFM. All pigs were orally challenged with a subclinical dose (6.7 × 108 CFU/mL) of K88 strain of E. coli on day 3 of the study (3 d after weaning). Feed intake and BW data were collected on days 0, 3, 7, 14, and 21. Fecal scores were recorded daily. On day 21, pigs were sacrificed to determine various indicators of gut health. Supplementation of the basal diet with antibiotics or DFM did not affect the overall (days 0–21) growth performance of pigs. However, antibiotics or DFM supplementation increased (P = 0.010) gain:feed (G:F) of pigs during the post-E. coli challenge period (days 3–21) by 23% and 24%, respectively. The G:F for the DFM-supplemented diet did not differ from that for the antibiotics-supplemented diet. The frequency of diarrhea for pigs fed a diet with antibiotics or DFM tended to be lower (P = 0.071) than that of pigs fed the basal diet. The jejunal villous height (VH) and the VH to crypt depth ratio (VH:CD) were increased (P &lt; 0.001) by 33% and 35%, respectively, due to the inclusion of antibiotics in the basal diet and by 43% and 41%, respectively due to the inclusion of DFM in the basal diet. The VH and VH:CD for the DFM-supplemented diet were greater (P &lt; 0.05) than those for the antibiotics-supplemented diet. Ileal VH was increased (P &lt; 0.05) by 46% due to the inclusion of DFM in the basal diet. The empty weight of small intestine, cecum, or colon relative to live BW was unaffected by dietary antibiotics or DFM supplementation. In conclusion, the addition of DFM to the basal diet improved the feed efficiency of E. coli-challenged weaned pigs to a value similar to that of the antibiotics-supplemented diet and increased jejunal VH and VH:CD ratio to values greater than those for the antibiotics-supplemented diet. Thus, under E. coli challenge, the test DFM product may replace the use of antibiotics as a growth promoter in diets for weaned pigs to improve feed efficiency and gut integrity.


2017 ◽  
Vol 95 (suppl_2) ◽  
pp. 108-109
Author(s):  
Q. Li ◽  
C. L. Loving ◽  
N. K. Gabler ◽  
E. R. Burrough ◽  
J. F. Patience

Sign in / Sign up

Export Citation Format

Share Document