Effects of Melatonin Supplementation During Mid- to Late-gestation Nutrient Restriction on Maternal and Fetal Amino Acid Concentrations

2021 ◽  
Vol 99 (Supplement_2) ◽  
pp. 17-17
Author(s):  
Rebecca M Swanson ◽  
Zully E Contreras-Correa ◽  
Thu Dinh ◽  
Elmer H King ◽  
Darcie R Sidelinger ◽  
...  

Abstract Nutrient restriction during mid- to late-gestation compromises pregnancy, alters maternal metabolism, and afflicts fetal growth and development. The objective of this study was to determine if dietary melatonin supplementation in global nutrient-restricted cows alters fetal-maternal circulating amino acids. In a 2x2 factorial, Brangus heifers of two calving seasons, spring (n = 29) and fall (n = 25) were fed a total mixed ration at either 100% (adequate; ADQ) or 60% (nutrient restricted; RES) of nutritional requirements based on NRC guidelines and were either supplemented with dietary melatonin (MEL; 20 mg/d) or no supplemented control (CON) from d 160 to d 240 of gestation. Heifers were supplemented and fed at 0900 h daily. Maternal blood, fetal blood, and amniotic fluid were collected at Cesarean section on d 240 of gestation in either the morning (AM; 0500 h) or afternoon (PM; 1330 h). Plasma and amniotic fluid AA were determined by a gas chromatography - mass spectrometry method with internal standard calibration using authentic amino acid standards. Total AA concentrations (mM) were calculated and the total fetal AA concentration was subtracted from the total maternal AA concentration to calculate maternal-fetal differences. Data were analyzed separately by calving season, using the MIXED procedure of SAS 9.4 to determine the effects of nutritional plane, melatonin supplementation, time of day, and their interaction on AA concentrations. Spring fetal-maternal AA differences were less (321±194 vs. 935±190 vs. 1,135±194 vs. 1,352±212 mM, respectively; P < 0.05) in RES-CON than in RES-MEL, ADQ-MEL, and ADQ-CON groups. Fall fetal-maternal AA differences did not differ (P > 0.05). Spring amniotic fluid AA concentrations were less (919±208 vs. 1,416±212 vs. 1,174±213 mM, respectively; P < 0.01) in RES-MEL heifers than in ADQ-MEL and RES-CON groups. Fall amniotic fluid AA concentrations were less (1,132±258 vs. 2,877±308 mM, respectively; P < 0.05) in all groups compared with ADQ-CON-AM. These findings demonstrate nutrient restriction during mid- to late-gestation alters circulating maternal AA concentrations, affecting fetal AA concentrations.

2012 ◽  
Vol 109 (8) ◽  
pp. 1382-1388 ◽  
Author(s):  
Thomas J. McDonald ◽  
Guoyao Wu ◽  
Mark J. Nijland ◽  
Susan L. Jenkins ◽  
Peter W. Nathanielsz ◽  
...  

Mechanisms linking maternal nutrient restriction (MNR) to intra-uterine growth restriction (IUGR) and programming of adult disease remain to be established. The impact of controlled MNR on maternal and fetal amino acid metabolism has not been studied in non-human primates. We hypothesised that MNR in pregnant baboons decreases fetal amino acid availability by mid-gestation. We determined maternal and fetal circulating amino acid concentrations at 90 d gestation (90dG, term 184dG) in control baboons fed ad libitum (C, n 8) or 70 % of C (MNR, n 6). Before pregnancy, C and MNR body weights and circulating amino acids were similar. At 90dG, MNR mothers had lower body weight than C mothers (P< 0·05). Fetal and placental weights were similar between the groups. MNR reduced maternal blood urea N (BUN), fetal BUN and fetal BUN:creatinine. Except for histidine and lysine in the C and MNR groups and glutamine in the MNR group, circulating concentrations of all amino acids were lower at 90dG compared with pre-pregnancy. Maternal circulating amino acids at 90dG were similar in the MNR and C groups. In contrast, MNR fetal β-alanine, glycine and taurine all increased. In conclusion, maternal circulating amino acids were maintained at normal levels and fetal amino acid availability was not impaired in response to 30 % global MNR in pregnant baboons. However, MNR weight gain was reduced, suggesting adaptation in maternal–fetal resource allocation in an attempt to maintain normal fetal growth. We speculate that these adaptive mechanisms may fail later in gestation when fetal nutrient demands increase rapidly, resulting in IUGR.


2020 ◽  
Vol 37 (11) ◽  
pp. 1084-1093 ◽  
Author(s):  
Anne C. Porter ◽  
Diane L. Gumina ◽  
Michael Armstrong ◽  
Kenneth N. Maclean ◽  
Nichole Reisdorph ◽  
...  

Abstract Objective Fetuses measuring below the 10th percentile for gestational age may be either constitutionally small for gestational age (SGA) or have pathologic fetal growth restriction (FGR). FGR is associated with adverse outcomes; however, identification of low-risk SGA cases is difficult. We performed a pilot study evaluating maternal markers of pathologic FGR, hypothesizing there are distinct amino acid signatures that might be used for diagnosis and development of new interventions. Study Design This was a cohort study of healthy women with sonographic fetal estimated fetal weight <5th percentile divided into two groups based upon umbilical artery (UmA) Doppler studies or uterine artery (UtA) Doppler studies. We collected maternal blood samples prior to delivery and used ion pair reverse phase liquid chromatography-mass spectrometry or gas chromatography-mass spectrometry to assess 44 amino acids. Results Among 14 women included, five had abnormal UmA, and three had abnormal UtA Doppler results. Those with abnormal UmA showed elevated ornithine. Those with abnormal UtA had lower dimethylglycine, isoleucine, methionine, phenylalanine, and 1-methylhistidine. Conclusion We found several amino acids that might identify pregnancies affected by pathologic FGR. These findings support the feasibility of future larger studies to identify maternal metabolic approaches to accurately stratify risk for small fetuses.


2019 ◽  
Vol 102 (3) ◽  
pp. 705-716 ◽  
Author(s):  
Lin Song ◽  
Jianqun Yan ◽  
Nan Wang ◽  
Xiaojing Wei ◽  
Xiao Luo ◽  
...  

Abstract Maternal high-fat (HF) diet negatively affects maternal metabolism and placental function. This study aimed to determine whether gestational exercise prevents the effect of HF diet on placental amino acid transporter expression and nutrient-sensing signaling and the fetal response. Pregnant Sprague-Dawley rats were either fed with a CHOW (13.5% fat) or HF (60% fat) diet during gestation and further divided into two subgroups: voluntary exercised and sedentary. Placentae were collected on gestational day (GD) 14 and GD20, and male placentae were used in this study. We found that gestational exercise ameliorated the detrimental effects of HF diet on dams’ adiposity, plasma leptin, and insulin concentrations. Maternal exercise did not influence fetoplacental growth but affected male fetal hypothalamic Leprb, Stat3, Insr, Agrp, and Pomc expressions on GD20. Maternal HF diet decreased placental labyrinth thickness and increased system A amino acid transporter SNAT2 expression, while these changes were normalized by exercise. The activation of placental mechanistic target of rapamycin complex 1/4E-BP1 and LepRb/STAT3 signaling might contribute to the increased placental SNAT2 expression in HF-fed dams, which were reversed by exercise on GD20. These data highlight that gestational exercise reverses HF-diet-induced placental alterations during late gestation without influencing fetal growth. However, maternal exercise altered fetal hypothalamic gene expression, which may affect long-term offspring health.


Diabetologia ◽  
2021 ◽  
Author(s):  
Trine Moholdt ◽  
Evelyn B. Parr ◽  
Brooke L. Devlin ◽  
Julia Debik ◽  
Guro Giskeødegård ◽  
...  

Abstract Aims/hypothesis We determined whether the time of day of exercise training (morning vs evening) would modulate the effects of consumption of a high-fat diet (HFD) on glycaemic control, whole-body health markers and serum metabolomics. Methods In this three-armed parallel-group randomised trial undertaken at a university in Melbourne, Australia, overweight/obese men consumed an HFD (65% of energy from fat) for 11 consecutive days. Participants were recruited via social media and community advertisements. Eligibility criteria for participation were male sex, age 30–45 years, BMI 27.0–35.0 kg/m2 and sedentary lifestyle. The main exclusion criteria were known CVD or type 2 diabetes, taking prescription medications, and shift-work. After 5 days, participants were allocated using a computer random generator to either exercise in the morning (06:30 hours), exercise in the evening (18:30 hours) or no exercise for the subsequent 5 days. Participants and researchers were not blinded to group assignment. Changes in serum metabolites, circulating lipids, cardiorespiratory fitness, BP, and glycaemic control (from continuous glucose monitoring) were compared between groups. Results Twenty-five participants were randomised (morning exercise n = 9; evening exercise n = 8; no exercise n = 8) and 24 participants completed the study and were included in analyses (n = 8 per group). Five days of HFD induced marked perturbations in serum metabolites related to lipid and amino acid metabolism. Exercise training had a smaller impact than the HFD on changes in circulating metabolites, and only exercise undertaken in the evening was able to partly reverse some of the HFD-induced changes in metabolomic profiles. Twenty-four-hour glucose concentrations were lower after 5 days of HFD compared with the participants’ habitual diet (5.3 ± 0.4 vs 5.6 ± 0.4 mmol/l, p = 0.001). There were no significant changes in 24 h glucose concentrations for either exercise group but lower nocturnal glucose levels were observed in participants who trained in the evening, compared with when they consumed the HFD alone (4.9 ± 0.4 vs 5.3 ± 0.3 mmol/l, p = 0.04). Compared with the no-exercise group, peak oxygen uptake improved after both morning (estimated effect 1.3 ml min−1 kg−1 [95% CI 0.5, 2.0], p = 0.003) and evening exercise (estimated effect 1.4 ml min−1 kg−1 [95% CI 0.6, 2.2], p = 0.001). Fasting blood glucose, insulin, cholesterol, triacylglycerol and LDL-cholesterol concentrations decreased only in participants allocated to evening exercise training. There were no unintended or adverse effects. Conclusions/interpretation A short-term HFD in overweight/obese men induced substantial alterations in lipid- and amino acid-related serum metabolites. Improvements in cardiorespiratory fitness were similar regardless of the time of day of exercise training. However, improvements in glycaemic control and partial reversal of HFD-induced changes in metabolic profiles were only observed when participants exercise trained in the evening. Trial registration anzctr.org.au registration no. ACTRN12617000304336. Funding This study was funded by the Novo Nordisk Foundation (NNF14OC0011493). Graphical abstract


2020 ◽  
Vol 98 (Supplement_3) ◽  
pp. 76-76
Author(s):  
Ron Ball ◽  
Crystal L Levesque ◽  
D J Cadogan

Abstract Most sows are fed a constant energy and amino acid supply throughout gestation, in line with the recommendations of most authorities and swine genetic companies. These recommendations for sow feeding have seen little change in decades, despite the many ways that sows have changed dramatically in reproductive performance. Beginning in about the year 2000, sow litter size has steadily increased as a result of genetic selection. With this increase in litter number has been a steady decline in birth weight, and the resulting negative effects of lower birthweight on subsequent piglet performance. Many experiments using so-called ‘bump’ feeding, or increased energy intake in late gestation, have been conducted in attempts to arrest this decline in birthweight and piglet performance. Generally, these experiments have shown little to no improvement in birthweight and often have negative effects on sow feed intake during gestation. These experiments have ignored the fact that the energy:amino acid ratios (lysine, threonine, isoleucine, tryptophan) in late gestation are different than during early and mid-gestation. In recent research in Australia we hypothesised that rapidly increasing essential amino acid levels in late gestation would increase birth weight and potentially improve subsequent reproductive performance. Three hundred and thirty-four multiparous PIC sows (average parity 3.6, average LW 261 kg) were housed in a dynamic gestation pen after mating and randomly assigned to one of two diet regimes. Two 13.5 MJ/kg DE gestation diets were formulated and created by blending in an ESF. The Control diet contained 0.48 g SID lysine per MJ DE and SID threonine, methionine+ cysteine, isoleucine and tryptophan at 68%, 65%, 58% and18% of SID lysine and offered at 2.2kg/day from d 28 to d 110. Sow were then moved to the farrowing house and placed on a lactation diet at 3.5kg/d. The Treatment diet contained 0.55 g SID lysine/MJ DE and SID threonine, methionine+cysteine, isoleucine and tryptophan at 78%, 65%, 60% and 20% of SID lysine and offered at 2.1kg/d from d 28 to d 85 and then increased to 2.4 kg/d to d 110 d. Increasing essential amino acid levels in late gestation increased gestational weight gain (5.6 kg, P=0.004), increased total litter birth weight (1.25 kg, P=0.003), and increased the birthweight of liveborn pigs from 1.286 to 1.329 kg, (P=0.04). There was no significant effect on the total number born or born alive. Piglet performance is not available because this commercial farm practices cross-fostering. Effects of continuation of this feeding regime in the same sows during subsequent parities is currently being evaluated.


Sign in / Sign up

Export Citation Format

Share Document