scholarly journals Effect of Dietary Clostridium butyricum Supplementation on Growth Performance, Intestinal Barrier Function, Immune Function, and Microbiota Diversity of Pekin Ducks

Animals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2514
Author(s):  
Yanhan Liu ◽  
Cun Liu ◽  
Keying An ◽  
Xiaowei Gong ◽  
Zhaofei Xia

Clostridium butyricum (C. butyricum) is increasingly being used to test the promotion of the gut health of animals. However, the modes of action for such applications for waterfowl remain unclear. Thus, we investigated whether or not intestinal barrier function, immune-related gene expression, and the diversity of the intestinal microbiota in Pekin ducks varied under C. butyricum supplementation. A total of 500 ducks were randomly assigned into five treatments supplemented with basal diets containing: either 0 (group Control), 200 (group CB200), 400 (group CB400) and 600 (group CB600) mg/kg C. butyricum or 150 mg/kg aureomycin (group A150) for 42 days. In comparison with the control group, C. butyricum supplementation enhanced the growth performance and intestinal villus height of Pekin ducks at 42 d. Serum immune indexes and fecal short-chain fatty acids (SCFAs) were all improved at both 21 d and 42 d after C. butyricum addition. The mRNA expression levels of Mucin2, Zonula occludens-1 (ZO-1), Caudin-3, and Occludin increased at 21 d and 42 d and the mRNA expression levels of IL-4 and IL-10 only increased at 42 d after C. butyricum addition. Dietary C. butyricum also resulted in an increase in the number of diversities of operational taxonomic units (OTUs), and an increase in the α-diversity of intestinal microbiota. The addition of C. butyricum altered the composition of the intestinal microbiota from 21 d to 42 d. The relative abundance of Firmicutes and Bacteroidetes showed little changes among groups; however, the relative abundance of Firmicutes/Bacteroidetes were found to have been significantly different between the 21 d and 42 d. C. butyricum administration improved the intestinal health of Pekin ducks by increasing the diversity of intestinal microbiota, enhancing the SCFAs contents, and strengthening the intestinal barrier function and immune systems. The optimal dietary supplementation dosage was recommended as 400 mg/kg in the diet.

2021 ◽  
Vol 12 ◽  
Author(s):  
Qingyuan Yi ◽  
Jiaxin Liu ◽  
Yufeng Zhang ◽  
Hanzhen Qiao ◽  
Fang Chen ◽  
...  

This study aimed to investigate the effects of dietary anethole supplementation on the growth performance, intestinal barrier function, inflammatory response, and intestinal microbiota of piglets challenged with enterotoxigenic Escherichia coli K88. Thirty-six weaned piglets (24 ± 1 days old) were randomly allocated into four treatment groups: (1) sham challenge (CON); (2) Escherichia coli K88 challenge (ETEC); (3) Escherichia coli K88 challenge + antibiotics (ATB); and (4) Escherichia coli K88 challenge + anethole (AN). On day 12, the piglets in the ETEC, ATB, and AN group were challenged with 10 mL E. coli K88 (5 × 109 CFU/mL), whereas the piglets in the CON group were orally injected with 10 mL nutrient broth. On day 19, all the piglets were euthanized for sample collection. The results showed that the feed conversion ratio (FCR) was increased in the Escherichia coli K88-challenged piglets, which was reversed by the administration of antibiotics or anethole (P < 0.05). The duodenum and jejunum of the piglets in ETEC group exhibited greater villous atrophy and intestinal morphology disruption than those of the piglets in CON, ATB, and AN groups (P < 0.05). Administration of anethole protected intestinal barrier function and upregulated mucosal layer (mRNA expression of mucin-1 in the jejunum) and tight junction proteins (protein abundance of ZO-1 and Claudin-1 in the ileum) of the piglets challenged with Escherichia coli K88 (P < 0.05). In addition, administration of antibiotics or anethole numerically reduced the plasma concentrations of IL-1β and TNF-α (P < 0.1) and decreased the mRNA expression of TLR5, TLR9, MyD88, IL-1β, TNF-α, IL-6, and IL-10 in the jejunum of the piglets after challenge with Escherichia coli K88 (P < 0.05). Dietary anethole supplementation enriched the abundance of beneficial flora in the intestines of the piglets. In summary, anethole can improve the growth performance of weaned piglets infected by ETEC through attenuating intestinal barrier disruption and intestinal inflammation.


Author(s):  
Yuxia Chen ◽  
Yining Xie ◽  
Ruqing Zhong ◽  
Hui Han ◽  
Lei Liu ◽  
...  

Abstract The objective of this study was to investigate the effects of xylo-oligosaccharides (XOS) supplementation on growth performance, serum parameters, small intestinal morphology, intestinal mucosal integrity, and immune function in weaned piglets. A total of 240 weaned piglets with an average body weight (BW) of 8.82 ± 0.05 kg (28 d of age) were assigned randomly to 4 dietary treatments in a 28-d trial, including a control diet (CON), 3 diets with XOS supplementation at the concentration of 100, 500 and 1000 mg/kg (XOS100, XOS500, and XOS1000). There were 4 replicates per treatment with 15 pigs per pen. From d 1 to 14, there were no differences (P > 0.05) in average daily gain (ADG), average daily feed intake (ADFI), and gain to feed ratio (G:F) during the different treatments. The different doses of XOS showed a quadratic effect on BW on d 28, ADG and G:F d 1-28 of piglets (P < 0.05). From d 15 to 28, ADG of pigs fed the XOS500 diet was higher (P < 0.05) than pigs fed the CON diet. During the overall period (d 1 to 28), pigs fed the XOS500 diet had a higher BW, ADG and G:F than pigs fed the CON diet (P < 0.05). In addition, compared with the CON group, the XOS500 group had significantly higher serum total antioxidant capacity (T-AOC), total superoxide dismutase (T-SOD) and catalase (CAT) levels and lower malondialdehyde (MDA) levels on d 14 and 28 (P < 0.05). The serum immunoglobulin G (IgG) concentration in the XOS500 group was also significantly higher compared with the CON group on d 14 and 28 (P <0.05). However, serum immunoglobulin A (IgA) and immunoglobulin M (IgM) were not affected by the dietary treatments. Supplementation of XOS500 to the feed significantly increased the villus height (VH) and villus height to crypt depth ratio (VH:CD) in the jejunum and ileum in comparison with the CON and XOS1000 group. Moreover, the XOS500 group significantly elevated the expression levels of Occludin and zonula occludens protein-1 (ZO-1) in the ileum compared to the CON group. The ileal interleukin (IL)-1β, IL-8 and interferon (IFN)-γ mRNA expression levels in the XOS100 and XOS500 group were markedly lower than in the CON group. In contrast, the ileal IL-10 mRNA expression levels were remarkably higher in the XOS500 than CON group. In conclusion, xylo-oligosaccharides have a beneficial effect on growth performance by improving serum antioxidant defense system, serum IgG, small intestinal structure and intestinal barrier function in weaned piglets.


2020 ◽  
Vol 10 (2) ◽  
pp. 568 ◽  
Author(s):  
Quanhang Xiang ◽  
Xiaoyu Wu ◽  
Ye Pan ◽  
Liu Wang ◽  
Yuwei Guo ◽  
...  

Early intervention with fecal microbiota transplantation (FMT) improves the growth performance and intestinal barrier function of piglets. Accelerating intestinal oxygen concentration is beneficial for symbiotic bacterial colonization. Saccharomyces boulardii (SB) is an aerobic fungus, which may contribute to the colonization of anaerobic symbiotic bacteria by competing for oxygen. Clostridium butyricum (CB) improves intestinal barrier function and performance, via regulating the gut microbiota composition of piglets. The objective of this study was to investigate the effect of early intervention with FMT combining CB and SB on growth performance, diarrhea, and intestinal barrier function in piglets. A total of 77 litters of neonatal piglets assigned to one of six treatments, which treated with antibiotics (AB), placebo (CON), and FMT (FMT), FMT-added CB (FMT+C), FMT-added SB (FMT+S), and FMT-added CB and SB (FMT+C+S), respectively. FMT+C+S treated piglets had higher body weight (BW) and average daily gain (ADG) both in weaning and finial period, and it significantly increased the levels of fecal mucin-2 (MUC2), fecal short-chain fatty acids (SCFAs), and relative abundance of fecal Lactobacillus spp., and Bifidobacterium genus. Moreover, early intervention with FMT+C+S reduced the diarrhea rate during the experiment. FMT+C+S also decreased the level of plasma diamine oxidase (DAO) and D-lactate (D-LA), and relative abundance of fecal E. coli during the suckling period. In summary, early intervention with FMT combining CB and SB improved the growth performance, intestinal barrier function, fecal SCFAs concentration, and fecal Lactobacillus and Bifidobacterium of piglets.


2021 ◽  
Author(s):  
Dingfa Wang ◽  
Luli Zhou ◽  
Hanlin Zhou ◽  
Guanyu Hou

Abstract Background: The effects of dietary supplementation with guava leaf extracts (GE) on growth performance, diarrhea and intestinal barrier function, as well as associated with its modulation of serum and fecal metabolic changes in weaned piglets challenged by enterotoxigenic Escherichia coli (ETEC) were investigated.Method: Fifty weaned piglets (Duroc × Yorkshire × Landrace) from 5 pens (2 piglets per pen) were randomly divided into five groups: blank control group (BC), negative control group (NC), or those supplemented with 50 mg kg-1 (S50), 100 mg kg-1 (S100), or 200 (S200) mg kg-1 diet GE, respectively. On day 4, all piglets (except for BC) were orally challenged with about 1.0 × 109 colony-forming units (CFU) enterotoxigenic ETEC. After 28-day trial, growth performance, diarrhea incidence, intestinal barrier function and metabolomics of serum and fecal were investigated.Results: We demonstrated that dietary supplementation with GE (50-200 mg kg-1) reduced diarrhea incidence of piglets and increased expression of intestinal tight junction proteins (ZO-1, Occludin, Claudin-1) (P < 0.05) and sodium hydrogen exchanger 3 (NHE3) (P < 0.05). Moreover, dietary supplementation with GE (50-200 mg kg-1) upregulated level of tetrahydrofolic acid (THF) and reversed higher level of nicotinamide-adenine dinucleotide phosphate (NADP) caused by ETEC in serum compared with NC group (P < 0.05), and enhanced antioxidant ability of piglets. In addition, dietary addition with GE (100 mg kg-1) reversed the lower level of L-pipecolic acid caused by ETEC in feces compared with NC group (P < 0.05), and decreased oxidative stress response of piglets. Further, there were no differences (P > 0.05) in the final weight, average daily feed intake (ADFI) and F/G among dietary groups during the overall period, and piglets in S50 group has the higher average daily gain (ADG). Conclusion: Dietary supplementation with 50-200 mg kg-1 GE reduced diarrhea incidence of weaned piglets challenged by ETEC and exhibited positive effect on improving intestinal barrier function. Meanwhile, dietary addition with GE organized and redistributed energy resources through similar or dissimilar metabolic pathways, and finally enhanced antioxidant ability of piglets challenged by ETEC.


Animals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3408
Author(s):  
Yaodong Wang ◽  
Jiayi Chen ◽  
Yingli Ji ◽  
Xue Lin ◽  
Yurong Zhao

The present study was conducted to investigate the effects of diet with betaine supplementation on the growth performance, carcass quality and fat deposition in finishing Ningxiang pigs. A total of 24 Ningxiang pigs (43.6 ± 5.34 kg of average body weight) was randomly divided into two groups, with 6 replicates per treatment and 2 pigs per replicate. The treatments included a control group (basal diet) and a test group (basal diet + 0.2% betaine). The whole trial lasted 81 days. At the end of the experiment, one pig (close to the average body weight of all experimental pigs) per replicate was slaughtered to determine the carcass traits, meat quality and the mRNA expression levels of genes relate to fat deposition (one pig per replicate was randomly selected and fasted for 12 h, n = 6). Results indicated that growth performance was not changed with betaine supplementation. However, dietary with betaine supplementation decreased back fat thickness and fat percentage, and increased the lean meat percentage as well (p < 0.05). In addition, diet with betaine supplementation reduced drip loss, water loss, cooking loss, shear force and b×24 h value of meat (p < 0.05). There was no difference in total moisture, ether extract and crude protein of longissimus thoracis between the control and test group. Dietary with betaine supplementation decreased ether extract and total cholesterol (p < 0.05) in liver. Dietary with betaine supplementation upregulated the mRNA expression levels of adipose triglyceride lipase (ATGL) and sirtuin 1 (Sirt1), while downregulated the mRNA expression levels of fatty acid synthase (FAS) and acetyl CoA carboxylase (ACC) in subcutaneous fat of back (p < 0.05). Besides, dietary with betaine supplementation upregulated the fatty acid binding protein 4 (FABP4) mRNA expression of longissimus thoracis in finishing Ningxiang pigs (p < 0.05). These results showed that diet supplemented with betaine could improve the slaughtering performance and meat quality, and regulate the genes expression to affect the fat deposition in finishing Ningxiang pigs.


2021 ◽  
Author(s):  
Shuai Liu ◽  
Yunxia Xiong ◽  
Jingping Chen ◽  
Hao Xiao ◽  
Qiwen Wu ◽  
...  

Abstract BACKGROUND: The beneficial function of fermented feed in livestock industry has been widely investigated. However, little is known about the effects of fermented feed on different weaned-day piglets. This study aimed to investigate the effects of fermented diet on the growth performance, intestinal function and microbiota of piglets weaned at age of 21 days and 28 days.RESULTS: The results found that weaning on d 21 significantly increased (P < 0.05) ADG, and ADFI (calculated based on wet weight and dry matter), while reduced (P < 0.05) F: G, the activities of trypsin and lipase of jejunum and villus height of ileum, compared with 28-d weaning. The protein levels of Occludin, Claudin-1, ZO-1 of ileum in the groups weaning on d 21 were less (P < 0.05) than the groups weaning on d 28. Moreover, dietary supplementation with fermented diet upregulated (P < 0.05) Occludin, Claudin-1, ZO-1 proteins of ileum, compared with the groups treated with control diet both weaning on d 21 and d 28. In addition, dietary supplementation with fermented diet decreased (P < 0.05) the relative abundance of Clostridia (class) and increased (P < 0.05) Bacteroidia (class) level of cecal microbiota, compared with the groups treated with control diet both weaning on d 21 and d 28. However, supplementation with fermented diet did not affect the concentrations of short-chain fatty acids in the cecum (P > 0.05).CONCLUSION: Therefore, our data suggest that feed digestibility is improved in piglets weaned at 21 days, but intestinal barrier function is weaker than in piglets weaned at 28 days. However, compared with feeding control diet, supplementation with fermented diet both improved feed conversion and intestinal barrier function of weaned piglets by modulating intestinal microbiota.


Sign in / Sign up

Export Citation Format

Share Document