130 Early Developmental Exposure to Stress and Programming of Lifelong Gut and Immune Function

2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 69-69
Author(s):  
Adam J Moeser

Abstract Prenatal and early postnatal life represents critical periods of development across species for many organ systems including immune, nervous, reproductive, and gastrointestinal systems. A high level of plasticity exists during these periods, and thus maternal and environmental cues including stress, immune stimulation, and nutrition, can alter the normal developmental programming of the fetus and neonate and impact the trajectory for disease risk and productivity across the lifespan. This presentation will focus on the impact of and biological mechanisms by which prenatal and early postnatal stressors, including psychological immune and nutritional stressors, alter the normal developmental programming of the immune, gastrointestinal, and neuroendocrine stress axes in the offspring and how this may link to increased disease risk and reduced productivity across the lifespan in animals and humans. Further, specifically how host factors such as biological sex interact with early life stress to shape gut and systemic neuroimmune development and later life disease risk will be discussed.

2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 92-92
Author(s):  
Adam J Moeser

Abstract The first 3–4 months of postnatal life represents a critical period in gastrointestinal (GI) development that shapes lifelong function and disease resistance. During this period, extensive maturation of the immune and nervous systems, and epithelial transport and barrier function, occurs. While some aspects of early life gut development are genetically “hard-wired,” the GI system exhibits a high degree of plasticity, and thus developmental trajectory and long-term function can be significantly modified during this period via host and environmental influences. Stress or adversity during early critical periods of development has been recognized as a significant risk factor for the later-life susceptibility to several GI and systemic chronic inflammatory and debilitating diseases in humans and animals, including functional bowel disorders characterized by dysmotility and neuroinflammation, but also disease associated with systemic inflammation, such as metabolic disorders (obesity and Type 2 diabetes) and neurobehavioral disorders including anxiety and depression. Moreover, early life stressors include routine management practices such as maternal separation and early weaning, social disruption, and early immune activation from disease or vaccination, and thus early life stress is common in animals. While the link between early life adversity and later life disease risk is well-established across species, the mechanisms that link early life stress, gut development and lifelong disease risk are poorly understood, and thus targeted management, therapeutic and nutritional strategies to reduce the negative impacts of early life stress are lacking. This goal of this presentation is to provide a biological framework for understanding how early life environmental and host factors such as stress and biological sex can alter the normal trajectory of GI development and disease risk throughout the lifespan. Ways in which changes in gut development might drive the risk for diseases important to many species, such as metabolic disease, functional/inflammatory bowel disorders and neurobehavioral disorders, will be discussed.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Stephanie A. Segovia ◽  
Mark H. Vickers ◽  
Clint Gray ◽  
Clare M. Reynolds

The prevalence of obesity, especially in women of child-bearing age, is a global health concern. In addition to increasing the immediate risk of gestational complications, there is accumulating evidence that maternal obesity also has long-term consequences for the offspring. The concept of developmental programming describes the process in which an environmental stimulus, including altered nutrition, during critical periods of development can program alterations in organogenesis, tissue development, and metabolism, predisposing offspring to obesity and metabolic and cardiovascular disorders in later life. Although the mechanisms underpinning programming of metabolic disorders remain poorly defined, it has become increasingly clear that low-grade inflammation is associated with obesity and its comorbidities. This review will discuss maternal metainflammation as a mediator of programming in insulin sensitive tissues in offspring. Use of nutritional anti-inflammatories in pregnancy including omega 3 fatty acids, resveratrol, curcumin, and taurine may provide beneficial intervention strategies to ameliorate maternal obesity-induced programming.


PLoS ONE ◽  
2015 ◽  
Vol 10 (10) ◽  
pp. e0142228 ◽  
Author(s):  
Matteo M. Pusceddu ◽  
Sahar El Aidy ◽  
Fiona Crispie ◽  
Orla O’Sullivan ◽  
Paul Cotter ◽  
...  

Author(s):  
V.A. Vokina

Long-term consequences of impaired perinatal development are very significant. They appear during the neonatal period and in the first years of life, and persist during ontogenesis. There is little data on the impact of any prenatal factors on the sensitivity of a sexually mature organism to medications. The aim of the study is to assess the impact of early life stress on the development of individual antidepressant sensitivity. Materials and Methods. The authors conducted the experiments on sexually mature outbred male rats. To simulate the early life stress, a standard protocol was used. From the 2nd to 15th days of the postnatal period the pup rats were separated from their mother for 3 hours and kept in an incubator. The open-field test, Porsolt test and Sucrose consumption test were used to determine rat’s anxiety level as well as motor, orientation and exploratory activity at puberty. Then, for 14 days, the rats were intragastrically administered with a fluoxetine solution (10 mg/kg/daily), followed by their full examination. Statistical analysis of results was performed using the Mann-Whitney U-test to compare unrelated groups and Wilcoxon's test to compare related groups. Results. Fluoxetine did not have a pronounced antidepressant effect in animals that survived the early life stress. Such animals demonstrated passive floating during the Porsolt test, without any changes in immobility time. When testing in an open field, a sharp increase in the number of freezing behavior was observed, which was an indicator of an increased anxiety level in animals. Conclusion. The results obtained indicate that the long-term effects of neonatal stress may be associated with a change in antidepressant sensitivity or an increase in development of unwanted adverse reactions. Keywords: early life stress, depression, antidepressants, fluoxetine, rats. Отдаленные последствия нарушения перинатального развития весьма значительны и не только проявляются в период новорожденности и в первые годы жизни, но и сохраняются в период онтогенеза. Данные о влиянии каких-либо пренатальных факторов на чувствительность половозрелого организма к действию лекарственных веществ в доступной литературе представлены незначительно. Цель исследования – оценить роль стресса раннего периода жизни в формировании индивидуальной чувствительности к действию антидепрессантов. Материалы и методы. Эксперименты проведены на половозрелых беспородных крысах-самцах. Для моделирования стресса раннего периода жизни использовали стандартный протокол, подразумевающий отделение детенышей от матери со 2-го по 15-й дни постнатального периода на 3 ч в условиях инкубатора. В половозрелом возрасте проводили оценку уровня тревожности, двигательной и ориентировочно-исследовательской активности крыс в условиях теста открытого поля, теста Порсолта и теста «Потребление раствора сахарозы». Затем в течение 14 дней крысам внутрижелудочно вводили раствор флуоксетина (10 мг/кг/сут), после чего обследование повторяли в том же объеме. Статистический анализ результатов исследования проводили с использованием U-критерия Манна–Уитни для сравнения несвязанных групп и критерия Вилкоксона для сравнения связанных групп. Результаты. У животных, переживших стресс раннего периода жизни, флуоксетин не оказывал выраженного антидепрессантного действия. У данных животных в тесте Порсолта преобладало пассивное плавание, без изменения длительности иммобильности. При тестировании в открытом поле наблюдалось резкое повышение числа актов фризинга, что является показателем повышенного уровня тревожности у животных. Выводы. Полученные результаты свидетельствуют о том, что отдаленные последствия неонатального стресса могут быть связанны с изменением чувствительности к действию антидепрессантов или повышением риска развития нежелательных побочных реакций. Ключевые слова: стресс раннего периода жизни, депрессия, антидепрессанты, флуоксетин, крысы.


2019 ◽  
Vol 79 (1) ◽  
pp. 113-132 ◽  
Author(s):  
Marion Rincel ◽  
Muriel Darnaudéry

The developmental period constitutes a critical window of sensitivity to stress. Indeed, early-life adversity increases the risk to develop psychiatric diseases, but also gastrointestinal disorders such as the irritable bowel syndrome at adulthood. In the past decade, there has been huge interest in the gut–brain axis, especially as regards stress-related emotional behaviours. Animal models of early-life adversity, in particular, maternal separation (MS) in rodents, demonstrate lasting deleterious effects on both the gut and the brain. Here, we review the effects of MS on both systems with a focus on stress-related behaviours. In addition, we discuss more recent findings showing the impact of gut-directed interventions, including nutrition with pre- and probiotics, illustrating the role played by gut microbiota in mediating the long-term effects of MS. Overall, preclinical studies suggest that nutritional approaches with pro- and prebiotics may constitute safe and efficient strategies to attenuate the effects of early-life stress on the gut–brain axis. Further research is required to understand the complex mechanisms underlying gut–brain interaction dysfunctions after early-life stress as well as to determine the beneficial impact of gut-directed strategies in a context of early-life adversity in human subjects.


2020 ◽  
Author(s):  
Andrew C. Bishop ◽  
Kimberly D. Spradling-Reeves ◽  
Robert E. Shade ◽  
Kenneth J. Lange ◽  
Shifra Birnbaum ◽  
...  

AbstractBackgroundPoor nutrition during development programs kidney function. No studies on postnatal consequences of decreased perinatal nutrition exist in nonhuman primates (NHP) for translation to human renal disease. Our baboon model of moderate maternal nutrient restriction (MNR) produces intrauterine growth restricted (IUGR) and programs renal fetal phenotype. We hypothesized that the IUGR phenotype persists postnatally, influencing responses to a high-fat, high-carbohydrate, high-salt (HFCS) diet.MethodsPregnant baboons ate chow (Control; CON) or 70% of control intake (MNR) from 0.16 gestation through lactation. MNR offspring were IUGR at birth. At weaning, all offspring (CON and IUGR females and males, n=3/group) ate chow. At ~4.5 years of age, blood, urine, and kidney biopsies were collected before and after a 7-week HFCS diet challenge. Kidney function, unbiased kidney gene expression, and untargeted urine metabolomics were evaluated.ResultsIUGR female and male kidney transcriptome and urine metabolome differed from CON at 3.5 years, prior to HFCS. After the challenge, we observed sex-specific and fetal exposure-specific responses in urine creatinine, urine metabolites, and renal signaling pathways.ConclusionsWe previously showed mTOR signaling dysregulation in IUGR fetal kidneys. Before HFCS, gene expression analysis indicated that dysregulation persists postnatally in IUGR females. IUGR male offspring response to HFCS showed uncoordinated signaling pathway responses suggestive of proximal tubule injury. To our knowledge, this is the first study comparing CON and IUGR postnatal juvenile NHP and the impact of fetal and postnatal life caloric mismatch. Perinatal history needs to be taken into account when assessing renal disease risk.


2021 ◽  
Vol 9 ◽  
Author(s):  
Zsofia P. Cohen ◽  
Kelly T. Cosgrove ◽  
Danielle C. DeVille ◽  
Elisabeth Akeman ◽  
Manpreet K. Singh ◽  
...  

Background: The COVID-19 pandemic has brought on far-reaching consequences for adolescents. Adolescents with early life stress (ELS) may be at particular risk. We sought to examine how COVID-19 impacted psychological functioning in a sample of healthy and ELS-exposed adolescents during the pandemic.Methods: A total of 24 adolescents (15 healthy, nine ELS) completed self-report measures prior to and during the COVID-19 pandemic. The effect of COVID-19 on symptoms of depression and anxiety were explored using linear mixed-effect analyses.Results: With the onset of the pandemic, healthy but not ELS-exposed adolescents evidenced increased symptoms of depression and anxiety (ps < 0.05). Coping by talking with friends and prioritizing sleep had a protective effect against anxiety for healthy adolescents (t = −3.76, p = 0.002).Conclusions: On average, this study demonstrated large increases in depression and anxiety in adolescents who were healthy prior to the COVID-19 pandemic, while ELS-exposed adolescents evidenced high but stable symptoms over time.


2014 ◽  
Vol 196 ◽  
pp. 72-80 ◽  
Author(s):  
Kim L. Schmidt ◽  
Elizabeth A. MacDougall-Shackleton ◽  
Kiran K. Soma ◽  
Scott A. MacDougall-Shackleton

2016 ◽  
Vol 71 ◽  
pp. 64
Author(s):  
Muriel Darnaudéry ◽  
Marion Rincel ◽  
Lépinay Amandine ◽  
Delage Pauline ◽  
Théodorou Vassilia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document