scholarly journals 136 Beef as a Functional Food for Improving Human Nutrition and Health

2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 70-71
Author(s):  
Guoyao Wu

Abstract Beef is an abundant source of all proteinogenic amino acids (AAs; in both adequate amounts and balanced ratios) and physiologically essential nonproteinogenic AAs (taurine and β-alanine). The content and bioavailabilities of proteinogenic AAs in beef are greater than those in plant-sourced foods. Taurine (a potent anti-oxidant) is essential for the integrity and functions of tissues, including eyes, heart, and skeletal muscle, whereas β-alanine is required for the production of antioxidative and neuromodulatory dipeptides. Furthermore, beef contains a large amount of creatine (essential for energy metabolism in tissues, particularly brain and skeletal muscle), anti-oxidative dipeptides (carnosine and anserine), and 4-hydroxyproline (an anti-inflammatory nutrient that maintains intestinal integrity and inhibits colitis). There are myths that plants provide all nutrients that are available in animal-sourced foods. However, taurine, vitamin B12, creatine, carnosine, and anserine are absent from plants, whereas β-alanine and 4-hydroxyproline are low or negligible in plants. Like other animal-sourced foods, beef plays an important role in the optimum growth of children and the prevention of anemia in humans, as well as maintaining muscle mass, delaying ageing, and mitigating sarcopenia in adults, while meeting the high demands of exercising individuals for high-quality protein. Some epidemiological studies raised concern that the consumption of red meat might increase risks for chronic diseases in humans, including obesity, type 2 diabetes mellitus, cardiovascular disease, kidney disease, and cancers. However, findings from many epidemiological and clinical studies do not support these claims. Beef-derived AAs and other nutrients enhance the metabolism (e.g., nitric-oxide and glutathione syntheses) and the functions of monocytes, macrophages, lymphocytes, and other cells of the immune system, thereby helping the human host to kill pathogenic bacteria, fungi, parasites, and viruses. The latter include severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2 (COVID-19). Therefore, beef is a functional food for optimizing human growth, development, and health.

2018 ◽  
Author(s):  
Se-Hwa Kim ◽  
Soo-Kyung Kim ◽  
Young-Ju Choi ◽  
Seok-Won Park ◽  
Eun-Jig Lee ◽  
...  

Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 771-P
Author(s):  
SODAI KUBOTA ◽  
HITOSHI KUWATA ◽  
SAKI OKAMOTO ◽  
DAISUKE YABE ◽  
KENTA MUROTANI ◽  
...  

2016 ◽  
Vol 22 (18) ◽  
pp. 2650-2656 ◽  
Author(s):  
Noelia Diaz-Morales ◽  
Susana Rovira-Llopis ◽  
Irene Escribano-Lopez ◽  
Celia Bañuls ◽  
Sandra Lopez-Domenech ◽  
...  

iScience ◽  
2021 ◽  
pp. 102712
Author(s):  
Tiina Öhman ◽  
Jaakko Teppo ◽  
Neeta Datta ◽  
Selina Mäkinen ◽  
Markku Varjosalo ◽  
...  

Biomolecules ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 99 ◽  
Author(s):  
Danja J. Den Hartogh ◽  
Evangelia Tsiani

Type 2 diabetes mellitus (T2DM) is a metabolic disease characterized by insulin resistance and hyperglycemia and is associated with personal health and global economic burdens. Current strategies/approaches of insulin resistance and T2DM prevention and treatment are lacking in efficacy resulting in the need for new preventative and targeted therapies. In recent years, epidemiological studies have suggested that diets rich in vegetables and fruits are associated with health benefits including protection against insulin resistance and T2DM. Naringenin, a citrus flavanone, has been reported to have antioxidant, anti-inflammatory, hepatoprotective, nephroprotective, immunomodulatory and antidiabetic properties. The current review summarizes the existing in vitro and in vivo animal studies examining the anti-diabetic effects of naringenin.


2021 ◽  
Vol 22 (13) ◽  
pp. 7228
Author(s):  
Ching-Chia Wang ◽  
Huang-Jen Chen ◽  
Ding-Cheng Chan ◽  
Chen-Yuan Chiu ◽  
Shing-Hwa Liu ◽  
...  

Urinary acrolein adduct levels have been reported to be increased in both habitual smokers and type-2 diabetic patients. The impairment of glucose transport in skeletal muscles is a major factor responsible for glucose uptake reduction in type-2 diabetic patients. The effect of acrolein on glucose metabolism in skeletal muscle remains unclear. Here, we investigated whether acrolein affects muscular glucose metabolism in vitro and glucose tolerance in vivo. Exposure of mice to acrolein (2.5 and 5 mg/kg/day) for 4 weeks substantially increased fasting blood glucose and impaired glucose tolerance. The glucose transporter-4 (GLUT4) protein expression was significantly decreased in soleus muscles of acrolein-treated mice. The glucose uptake was significantly decreased in differentiated C2C12 myotubes treated with a non-cytotoxic dose of acrolein (1 μM) for 24 and 72 h. Acrolein (0.5–2 μM) also significantly decreased the GLUT4 expression in myotubes. Acrolein suppressed the phosphorylation of glucose metabolic signals IRS1, Akt, mTOR, p70S6K, and GSK3α/β. Over-expression of constitutive activation of Akt reversed the inhibitory effects of acrolein on GLUT4 protein expression and glucose uptake in myotubes. These results suggest that acrolein at doses relevant to human exposure dysregulates glucose metabolism in skeletal muscle cells and impairs glucose tolerance in mice.


Sign in / Sign up

Export Citation Format

Share Document