293 Effect of Supplementing Rumen-protected Methionine on Blood Parameters and Ruminal Metabolites in Lactating Holstein Dairy Cows

2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 160-160
Author(s):  
Jialin Wei ◽  
Zhijun Cao ◽  
Yuanxiao Li

Abstract The aim of the present study was to evaluate the effects of reducing dietary crude protein (CP) levels and supplementing rumen-protected methionine (RPM) on blood parameters and ruminal metabolites in lactating Holstein dairy cows. A total of 30 lactating Holstein dairy cows (60 ± 7 d in milk; mean ± SD) were randomly assigned to 1 of 2 treatments: diet containing 17.3% CP without RPM (control group; CON); diet containing 16.4% CP with supplementing 15.0 g/d of RPM (treatment group; RPM). All repeated, continuous data were subjected to PROC MIXED procedure of SAS (SAS version 9.2, SAS Institute Inc., Cary, NC.). The results related to blood showed that cows in RPM group exhibited lower concentration of blood urea nitrogen than that in CON group (P < 0.001). Moreover, there were no differences among treatments on concentrations of aspartate transaminase, alanine transaminase, alkaline phosphatase, globulin and albumin (P > 0.05). In ruminal metabolites, microbial CP (MCP) of dairy cows in RPM group was higher compared with CON group (P = 0.006). The concentrations of butyrate, valerate and isovalerate of RPM group were higher than that of CON group at 2h after feeding (P < 0.05). In conclusion, lower dietary CP with RPM supplementation could improve nitrogen utilization of dairy cows and synthesis of MCP in rumen, as well as change volatile fatty acids production at 2h after feeding.

2021 ◽  
Author(s):  
Jialin Wei ◽  
Mengying Dou ◽  
Shuai Liu ◽  
Bichuan Yan ◽  
Cuiyu Li ◽  
...  

Abstract Background: Because of disadvantages of excessive dietary crude protein (CP), decreasing dietary CP of dairy cows has attracted the worldwide attention. Rumen protected methionine (RPM) supplementation can allow lower CP diets and is beneficial to milk production performance, N efficiency of cows and environment. The aim of this study was to evaluate the effects of reducing dietary CP and supplementing RPM on production, digestibility of nutrients, blood parameters, ruminal metabolites and economic effectiveness in lactating Holstein dairy cows. Results: A total of 96 lactating cows (63 ± 25 d in milk; 34.4 ± 5.74 kg/d of milk production; mean ± SD) were randomly assigned to 1 of 2 treatments: diet containing 17.3% CP without RPM (control group; CON; n = 49); diet containing 16.4% CP with supplementing 15.0 g/d of RPM (treatment group; RPM; n = 47). No effect was observed of reducing dietary CP on milk yield and milk composition. The apparent digestibility of nutrients was similar between treatments. The results related to blood showed that cows in RPM group exhibited lower concentration of blood urea nitrogen than that in CON group (P < 0.001). Moreover, there were no differences between treatments on concentrations of aspartate transaminase, alanine transaminase, alkaline phosphatase, globulin and albumin. In ruminal metabolites, microbial crude protein (MCP) of dairy cows in RPM group was higher compared with CON group (P = 0.006). Ruminal volatile fatty acid (VFA) contents were not changed by treatments except that the concentrations of butyrate and isovalerate of RPM group were higher than that of CON group at 2 h after feeding (P < 0.05). In addition, supplying the diet of 16.4% CP with RPM supplementation to cows could reduce feeding cost by 0.5 $/d per cow and boost net profits. Conclusions: Lower dietary CP with RPM supplementation did not limit milk yield, milk composition and apparent digestibility of nutrients, and could improve nitrogen utilization of dairy cows and synthesis of MCP in rumen, change VFA production at 2 h after feeding, as well as boost the economic benefits of the dairy farms.


Mljekarstvo ◽  
2021 ◽  
Vol 71 (2) ◽  
pp. 132-140
Author(s):  
Radko Loucka ◽  

The aim of this study was to confirm the hypothesis that artificial brushes administered to the rumen can partially replace the function of structural fibre, and increase milk production or quality. To mitigate the risks of feeding low levels of physically effective neutral detergent fibre (peNDF) to cattle, the administration of ruminal mechanical stimulating (RMS) brushes was examined in 22 high-yielding lactating Holstein dairy cows. The cows were divided into an experimental group equipped with RMS brushes and a control group without RMS. Cows were fed four experimental total mixed rations (TMR) consisting of fixed amounts of alfalfa silage, maize silage, rush corn cob mix silage and different proportions of brewer’s grains, concentrate and wheat straw. The TMRs had the following 4 peNDF contents: 10.9 %, 13.0 %, 12.6 % and 14.0 %. The duration of the experiment was 18 weeks. All cows were fed TMRs with a low structural fibre content near levels associated with a risk of subacute ruminal acidosis (SARA). For the RMS brush group, 3 RMS brushes were inserted orally into the rumen using a special applicator. The effects of RMS brushes on feed intake, rumen fermentation and milk production were evaluated. Ruminal fluid (250 mL) was taken using a stomach tube for pH, volatile fatty acids and ammonia nitrogen analysis. A significant increase was found for the feed intake and milk yield of the RMS group fed the TMRs with 13.0 % peNDF although no relationship between peNDF content and RMS TMRs was found. No significant increase in milk quality, rumen pH or rumen fermentation metabolites was declared for the group with RMS brushes. Although RMS brush technology only partially reduced the requirements for peNDF, it may decrease the risk of SARA.


2011 ◽  
Vol 80 (2) ◽  
pp. 139-145 ◽  
Author(s):  
Petr Doležal ◽  
Jan Dvořáček ◽  
Jan Doležal ◽  
Jana Čermáková ◽  
Ladislav Zeman ◽  
...  

The experiment was conducted to evaluate the effect of yeast culture (Saccharomyces cerevisiae) supplementation on ruminal fermentation in 20 Holstein dairy cows divided into control and experimental groups, each group of 10 cows. The animals received a diet based on maize silage (19 kg), alfalfa silage (15 kg), meadow hay (1.5 kg), extracted rapeseed meal (1 kg) and concentrate mixture (9.5 kg). The diets were fed as a total mixed ration. The supplement of yeast culture Levucell® SC 20 (Saccharomyces cerevisiae – CNCM I-1077; min. content 2 × 1010 CFU·g-1) was added to the concentrate mixture in the ration fed to the experimental group of animals. The addition of yeast culture significantly (P < 0.01) increased ruminal pH but had no positive effects on the increased production of volatile fatty acids. The supplementation of yeast culture significantly (P < 0.01) increased numbers of protozoa in the rumen of dairy cows of the experimental group (361.3 ± 18.315) compared to the control group (308.3 ± 37.505). The addition of yeast culture significantly (P < 0.01) increased concentration of serum glucose, calcium, phosphorus, copper, zinc, magnesium and AST (P < 0.05). As compared to the control group (4.948 ± 0.0384 mmol·l-1), the level of urea in the blood serum was significantly decreased (P < 0.01) in the experimental group of cows. Our results show that the supplementation of Saccharomyces cerevisiae culture at recommended doses enhances ruminal fermentation which may have a positive effect on milk production and health status of Holstein dairy cows.


Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 722
Author(s):  
Jang-Hoon Jo ◽  
Jalil Ghassemi Nejad ◽  
Dong-Qiao Peng ◽  
Hye-Ran Kim ◽  
Sang-Ho Kim ◽  
...  

This study aims to characterize the influence of short-term heat stress (HS; 4 day) in early lactating Holstein dairy cows, in terms of triggering blood metabolomics and parameters, milk yield and composition, and milk microRNA expression. Eight cows (milk yield = 30 ± 1.5 kg/day, parity = 1.09 ± 0.05) were homogeneously housed in environmentally controlled chambers, assigned into two groups with respect to the temperature humidity index (THI) at two distinct levels: approximately ~71 (low-temperature, low-humidity; LTLH) and ~86 (high-temperature, high-humidity; HTHH). Average feed intake (FI) dropped about 10 kg in the HTHH group, compared with the LTLH group (p = 0.001), whereas water intake was only numerically higher (p = 0.183) in the HTHH group than in the LTLH group. Physiological parameters, including rectal temperature (p = 0.001) and heart rate (p = 0.038), were significantly higher in the HTHH group than in the LTLH group. Plasma cortisol and haptoglobin were higher (p < 0.05) in the HTHH group, compared to the LTLH group. Milk yield, milk fat yield, 3.5% fat-corrected milk (FCM), and energy-corrected milk (ECM) were lower (p < 0.05) in the HTHH group than in the LTLH group. Higher relative expression of milk miRNA-216 was observed in the HTHH group (p < 0.05). Valine, isoleucine, methionine, phenylalanine, tyrosine, tryptophan, lactic acid, 3-phenylpropionic acid, 1,5-anhydro-D-sorbitol, myo-inositol, and urea were decreased (p < 0.05). These results suggest that early lactating cows are more vulnerable to short-term (4 day) high THI levels—that is, HTHH conditions—compared with LTLH, considering the enormous negative effects observed in measured blood metabolomics and parameters, milk yield and compositions, and milk miRNA-216 expression.


Animals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 507 ◽  
Author(s):  
Zhang ◽  
Xu ◽  
Cao ◽  
Wang ◽  
Yang ◽  
...  

This study investigated the effect of tannin sources on nutrient intake, digestibility, performance, nitrogen utilization, and blood parameters in lactating dairy cows. Four multiparous lactating Holstein cows were used in a balanced 4 × 4 Latin square design, with each period lasting 28 days. Cows were randomly assigned to one of four dietary treatments: Control diet (CON, a totally mixed ration without tannin supplements), control diet supplemented with 3% bayberry condensed tannins (BCT), control diet supplemented with 3% Acacia mangium condensed tannins (ACT), and control diet supplemented with 3% valonia hydrolyzed tannins (VHT). Dietary treatments did not significantly affect nutrient intake, milk yield or composition, microbial protein synthesis, nitrogen utilization efficiency, or plasma concentrations of glucose, non-esterified fatty acids, β-hydroxybutyrate, total protein, and globulin, or the albumin-to-globulin ratio. Tannin supplements decreased the apparent total tract nutrient digestibility to varying degrees and significantly decreased the milk and blood urea nitrogen contents (p < 0.05). Tannin supplements altered nitrogen excretion routes in lactating dairy cows, and BCT significantly decreased the urinary nitrogen excretion (p = 0.04). Compared with the CON, ACT, and VHT diets, BCT yielded the highest nitrogen retention and nitrogen retention-to-digestible nitrogen ratio despite having a similar nitrogen utilization efficiency (p < 0.05). Bayberry condensed tannin supplementation may be a potential way to improve nitrogen utilization and reduce concerns regarding nitrogen excretion in dairy cows.


Animals ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 151 ◽  
Author(s):  
Wen Zhu ◽  
Wei Xu ◽  
Congcong Wei ◽  
Zijun Zhang ◽  
Chunchao Jiang ◽  
...  

The effects of decreasing dietary crude protein (CP) level on growth performance, nutrient digestion, serum metabolites, and nitrogen utilization in growing goat kids were investigated in the current study. Thirty-six male Anhui white goat kids were randomly assigned to one of three CP content diets: 14.8% (control), 13.4%, and 12.0% of dry matter, respectively. Diets were isoenergetic. The experiment lasted for 14 weeks, with the first two weeks being for adaptation. Results showed that the low-CP diet decreased average daily gain, feed efficiency, digestibility of dry matter, organic matter, crude protein, and fiber. No significant changes were observed in dry-matter intake. With a decrease in dietary CP level, fecal nitrogen excretion (% of nitrogen intake) increased linearly, whereas CP intake, blood urea nitrogen, urinary nitrogen excretion (% of nitrogen intake), and total nitrogen excretion (% of nitrogen intake) decreased. Serum glucose concentration decreased, while concentrations of low-density lipoproteins and non-esterified fatty acids increased with the low-CP diet. In conclusion, decreasing the dietary CP level decreased goats’ nitrogen excretion, but with restrictive effects on growth performance. A diet containing 13.4% CP is optimal for reducing nitrogen excretion without any adverse effect on growth performance of Anhui white goat kids. This concentration is 1.4% points lower than the NRC recommendations and thus is also environmentally beneficial on the input side because it decreases the use of feed (soy) protein.


Sign in / Sign up

Export Citation Format

Share Document