287 Effects of a Novel Rumen-protected Folic Acid Supplement on Feedlot Performance and Carcass Characteristics of Beef Steers

2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 160-161
Author(s):  
Erin L Deters ◽  
Emma Niedermayer ◽  
Olivia N Genther-Schroeder ◽  
Christopher Blank ◽  
Remy Carmichael ◽  
...  

Abstract To assess effects of a novel rumen-protected folic acid (RPFA) supplement, 180 Angus-cross steers (292 ± 18 kg) were blocked by body weight to pens and randomly assigned to dietary treatments (n = 6 pens/treatment): target intake of 0 (CON), 30 (RPFA-30), 60 (RPFA-60), 90 (RPFA-90), 120 (RPFA-120), or 150 (RPFA-150) mg RPFA·steer-1·d-1. Steers were weighed on d -1, 0, 55, 56 (end of growing), 86, 87, 181, and 182. Liver and blood were collected (two steers/pen) before trial initiation and at the end of growing and finishing. Data were analyzed as a randomized complete block design using ProcMixed of SAS (fixed effects of treatment and block; experimental unit of pen). Liver abscess scores were analyzed using ProcGenmod of SAS. Contrast statements evaluated polynomial effects of RPFA and compared CON vs. RPFA-30. At end of growing, RPFA linearly increased plasma folic acid (P < 0.01) and linearly decreased plasma glucose (P = 0.01). Liver folic acid concentrations at end of growing were greatest for CON, RPFA-90, and RPFA-120 (cubic P = 0.01), and growing period (d 0 to 56) average daily gain and gain:feed were greatest for CON and RPFA-120 (cubic P ≤ 0.03). At end of finishing, RPFA linearly increased plasma folic acid concentrations (P < 0.01), and liver folic acid concentrations were lesser for CON vs. RPFA-30 (P = 0.04). Severe liver abscess percentage tended to be greater for CON vs. RPFA-30 (P = 0.09), while dressing percent was lesser for CON vs. RPFA-30 (P = 0.04). Overall (d 0 to 182) carcass-adjusted gain:feed tended to be greater for CON vs. RPFA-30 (P = 0.09). Although RPFA increased plasma folic acid concentrations throughout the study, feedlot performance was not improved, possibly due to low vitamin B12 status (plasma < 200 pg/mL) of steers, regardless of treatment.

Author(s):  
Erin L Deters ◽  
Emma K Niedermayer ◽  
Olivia N Genther-Schroeder ◽  
Christopher P Blank ◽  
Remy N Carmichael ◽  
...  

Abstract Angus-crossbred steers (n = 180; 292 ± 18 kg) from a single ranch were used to investigate the effects of a novel rumen-protected folic acid (RPFA) supplement on feedlot performance and carcass characteristics. On d 0, steers were blocked by body weight to pens (5 steers/pen), and pens within a block were randomly assigned to dietary treatments (n = 6 pens/treatment): target intake of 0 (CON), 30 (RPFA-30), 60 (RPFA-60), 90 (RPFA-90), 120 (RPFA-120), or 150 (RPFA-150) mg RPFA·steer -1·d -1. Steers were weighed before feeding on d -1, 0, 55, 56, 86, 87, 181, and 182. Pen average daily gain (ADG), dry matter intake (DMI), and gain:feed (G:F) were calculated for growing (d 0 to 56), dietary transition (d 56 to 87), finishing (d 87 to 182), and overall (d 0 to 182). Liver and blood samples were collected from two steers/pen before trial initiation and at the end of growing and finishing. Steers were slaughtered on d 183, and carcass data were collected after a 48-h chill. Data were analyzed as a randomized complete block design using ProcMixed of SAS 9.4 (fixed effects of treatment and block; experimental unit of pen). Liver abscess scores were analyzed using the Genmod Procedure of SAS 9.4. Contrast statements assessed the polynomial effects of RPFA. Supplemental RPFA linearly increased plasma folate at the end of growing and finishing (P < 0.01), and linearly decreased plasma glucose at the end of growing (P = 0.01). There was a cubic effect of RPFA on liver folate at the end of growing (P = 0.01), driven by lesser concentrations for RPFA-30, RPFA-60, and RPFA-150. Growing period ADG and G:F were greatest for CON and RPFA-120 (cubic P ≤ 0.03). Transition period DMI was linearly increased due to RPFA (P = 0.05). There was a tendency for a cubic effect of RPFA on the percentage of livers with no abscesses (P = 0.06), driven by a greater percentage of non-abscessed livers in RPFA-30 and RPFA-60. Despite supplementing 1 mg Co/kg DM, and regardless of treatment, plasma vitamin B12 concentrations were low (< 200 pg/mL), which may have influenced the response to RPFA as vitamin B12 is essential for recycling of folate.


2021 ◽  
Vol 99 (Supplement_1) ◽  
pp. 131-132
Author(s):  
Erika L Lundy ◽  
Aubree M Beenken ◽  
Patrick B Wall ◽  
Daniel D Loy

Abstract A 144-day study assessed the effects of dietary energy and implant potency to determine optimum strategies for managing feed conversion (F:G) and marbling. Fifty-four Angus steers (327 ± 8 kg) from Iowa State University’s herd genetically selected for enhanced marbling were stratified by initial bodyweight (BW), ultrasound intramuscular fat, and age to a 2 × 3 factorial. Dietary treatments included: low energy (1.30 Mcal NEg/kg DM, 18% roughage level; LE) or high energy finishing ration (1.39 Mcal NEg/kg DM, 8% roughage; HE). Implant treatments (IMP; Merck) included: no implant (NOIMP), Revalor-IS (RIS), or Revalor-200 (R200) on d 0 and 74. Steers were fed via bunks capturing daily individual feed disappearance (n = 9 steers/treatment). Steers were weighed on d 0, 74, and 144 and harvested on d 145. Data were analyzed in Proc Mixed of SAS with fixed effects of diet, IMP, and interaction. No interactions were observed for feedlot performance (P > 0.17). Steers fed HE had greater average daily gain (ADG) and final BW than LE steers (P < 0.01) while LE steers had greater F:G (P = 0.04). Final BW and ADG were greatest for R200, intermediate for RIS, and lowest for NOIMP (P < 0.01). F:G was greatest for NOIMP, intermediate for RIS, and lowest for R200 (P < 0.01). Steers fed HE had increased ribeye area (P < 0.01) and tended to have greater marbling score (P = 0.06; 809) than LE steers (769). While ribeye area increased in response to implant potency (P < 0.01), marbling score was not impacted (P = 0.21) by IMP (815, 771, 782, for NOIMP, RIS, R200, respectively). Overall, steers graded 100% Choice or higher and 55% Prime. These data suggest implants, when used appropriately, improve growth performance and efficiency in beef steers without compromising carcass quality.


2020 ◽  
Vol 98 (Supplement_3) ◽  
pp. 34-34
Author(s):  
Erin Deters ◽  
Stephanie L Hansen

Abstract This study sought to determine the effects of injectable vitamin C (VC), pre- or post-transit, on blood parameters and feedlot performance of beef steers. Seventy-two, Angus-cross steers were blocked by weight (356 ± 18 kg) and randomly assigned to intramuscular injection treatments (20 mL/steer): saline pre- and post-transit (CON), VC (Vet One; 250 mg sodium ascorbate/mL) pre-transit and saline post-transit (PRE), or saline pre-transit and VC post-transit (POST). Following pre-transit injections (d 0), steers were transported for ~18 h (1,675 km). Upon return (d 1), steers received post-transit injections and were sorted into pens (6 steers/pen) equipped with GrowSafe bunks. Steers were weighed on d 0, 1, 7, 30, 31, 56, and 57. Blood was collected on d 0, 1, 2, and 7. Data were analyzed as a randomized complete block design using ProcMixed of SAS (experimental unit = steer; 24 steers/treatment); treatment and block were fixed effects. Blood variables were analyzed as repeated measures. Injectable VC did not affect BW shrink due to transit (P = 0.28). Compared to CON-steers, PRE or POST-steers exhibited greater dry matter intake from d 31-57 and overall (d 1-57; P ≤ 0.02). Average daily gain was greatest for PRE-steers from d 7-31 and overall (P ≤ 0.05), resulting in PRE-steers being heaviest on d 30/31 (P = 0.03) and tending to be heaviest on d 56/57 (P = 0.07). Plasma ascorbate concentrations were decreased immediately post-transit for CON and POST-steers but increased for PRE-steers (treatment × day; P < 0.01). Plasma ferric reducing antioxidant potential and malondialdehyde were decreased post-transit while serum non-esterified fatty acid and haptoglobin were increased; all blood parameters returned to baseline by d 7 (day; P < 0.01). Timing of injectable VC administration appears to influence how cattle respond to transit as pre-transit administration improved subsequent performance of steers.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 152-153
Author(s):  
Aubree M Beenken ◽  
Erin L Deters ◽  
Colten W Dornbach ◽  
Stephanie L Hansen ◽  
Joshua C McCann ◽  
...  

Abstract Ninety-one early-weaned (65 ± 11 d) Angus steers (92 ± 4 kg) were blocked by age to a 2 × 2 factorial examining effects of injectable vitamin C (VC) at weaning and/or prior to transport to the feedlot on antibody titers and growth performance. Injections (20 mL/steer) of VC (250 mg sodium ascorbate/mL) or saline (SAL) were given at time of weaning on d 0 (WEAN) and/or prior to a 6 hr trucking event to a feedlot on d 49 (TRANS). Steers were given booster vaccinations on d 0. Steers were weighed on d 0, 1, 14, 48, 49, 64, 106, and 107. Blood was collected (12 steers/treatment) on d 0, 1, 2, 14, 49 (pre- and post-transit), 50, and 51. Data were analyzed via Proc-Mixed of SAS (experimental unit = steer; n = 22–23/treatment) with fixed effects of block, WEAN, TRANS, and WEAN × TRANS. Plasma ascorbate concentrations for weaning (d 0, 1, and 2) and transit (d 49-pre-trucking, 49-post-trucking, 50, and 51) were analyzed as repeated measures (repeated effect = day). Plasma ascorbate concentrations were greater on d 1 and 2 for steers that received VC at weaning (VC = 19.6, SAL = 8.8 ± 1.26 µM; WEAN × day P < 0.01). Similarly, ascorbate concentrations were greater on d 49 post-trucking, 50, and 51 for steers that received VC pre-transit (TRANS × day P = 0.01). Treatments did not affect bodyweight or average daily gain throughout the trial (P > 0.32). There were no effects of treatment on serum Bovine Viral Diarrhea Virus type 2 antibody titers on d 14 or 51 (P > 0.33). An injection of VC administered to early weaned beef steers at weaning or pre-transit increases plasma ascorbate concentrations but does not improve growth performance or antibody response to vaccination booster.


2021 ◽  
Vol 99 (Supplement_1) ◽  
pp. 61-62
Author(s):  
Woongbi Bi Kwon ◽  
Jose A Soto ◽  
Hans H Stein

Abstract An experiment was conducted to test the hypothesis that addition of Val, Ile, or Trp alone or in combination will reduce the negative effects of excess Leu in diets for growing pigs. A total of 288 growing pigs (28.6 ± 2.5 kg) were randomly assigned to 1 of 9 dietary treatments in a randomized complete block design. There were 2 barrows and 2 gilts in each pen and 8 replicate pens per treatment. A control diet based on corn and soybean meal and 8 diets based on corn and a high-protein corn product (48% crude protein) with 2 levels of crystalline L-Val (0 or 0.10%), L-Ile (0 or 0.10%), and L-Trp (0 or 0.05%) were formulated. The crystalline L-Val, L-Ile, and L-Trp increased standardized ileal digestible (SID) Val:Lys from 70 to 80%, SID Ile:Lys from 53 to 63%, and SID Trp:Lys from 18 to 23%, respectively. All diets were formulated to contain 1.00% SID Lys and the 8 diets containing corn protein contained 171% SID Leu:Lys. Individual pig weights were recorded at the beginning and at the conclusion of the 28-d experiment. Data were analyzed using the PROC MIXED of SAS with a pen as the experimental unit. Diet was the fixed effect and block and replicate within block were random effects. Results indicated that final body weight and average daily gain were not different between pigs fed the control diet and pigs fed the diet with Val and Trp addition, but greater (P < 0.001) than for pigs fed the diet with Val addition, Ile addition, Trp addition, Val and Ile addition, Ile and Trp addition, or Val, Ile, and Trp addition (Table 1). In conclusion, addition of Val and Trp to diets with excess Leu may prevent negative effects of excess Leu in diets for growing pigs.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 166-167
Author(s):  
Andrea M Osorio ◽  
Kaue T Tonelli Nardi ◽  
Igor Gomes Fávero ◽  
Kaliu G Scaranto Silva ◽  
Kymberly D Coello ◽  
...  

Abstract The effects of a nutritional packet were evaluated on CH4 emissions and apparent total tract nutrient digestibility of feedlot beef steers. Thirty Angus-crossbred steers (BW = 542 ± 8.4 kg) were used in a randomized complete block design and allocated into pens equipped with SmartFeed (C-Lock; 15 steers/treatment). Steers were consuming a steam-flaked corn-based diet (88% concentrate DM basis) ad libitum for the last 65 d on feed, and received the following treatments: 1) control and 2) a nutritional packet [0.29% DM basis; live yeast (Saccharomyces cerevisiae; 8.7 Log CFU/g); Vitamin C (5.4 g/kg); Vitamin B1 (13.33 g/kg); NaCl (80 g/kg); KCl (80 g/kg)]. Methane emissions and apparent total tract nutrient digestibility were measured during 3 periods with 5-d of collections each. Gas emissions from steers were measured utilizing the SF6 tracer technique. Feed and fecal samples were collected once and twice (0700 h and 1600 h) daily, respectively, to determine digestibility of nutrients using iNDF as an internal marker. Steer was considered the experimental unit. Data were analyzed as repeated measures using the MIXED procedure of SAS with the fixed effects of treatment, period, and their interaction, and the random effect of block. No treatment × period interactions (P ≥ 0.125) were observed for DMI and any of the CH4 production variables (g/day, g/kg BW0.75, g/nutrient intake, and g/nutrient digested). Moreover, treatments did not affect digestibility of DM, OM, or ADF (P ≥ 0.300); however, digestibility of NDF was increased for treated cattle (P = 0.013), which resulted in a tendency (P = 0.098) to decrease CH4 production in g per kg NDF intake and decreased (P = 0.020) grams CH4 per kg NDF digested. The nutritional packet may be altering ruminal fermentation on intensively managed steers and improving fiber digestibility, which can have benefits on CH4 emission intensity.


2019 ◽  
Vol 97 (Supplement_2) ◽  
pp. 141-142
Author(s):  
Jerad R Jaborek ◽  
Alejandro E Relling

Abstract The presence of reactive oxygen species has been associated with the differentiation of pre-adipocytes into lipid filled mature adipocytes in vitro. We hypothesized offering a diet without supplemental antioxidant minerals (Cu, Mg, Zn, and Se) to steers during the growing phase, a time when intramuscular fat cells are believed to be proliferating, would promote differentiation of pre-adipocytes, leading to more desirable marbling scores compared with steers supplemented to meet their mineral requirements. After adaptation to the feedlot, 168 Sim-Angus steers were divided into four weight blocks, placed in one of twenty-four pens, and randomly assigned a dietary treatment. Dietary treatments were: 1) no supplemental (Cu, Mg, Zn, and Se) minerals; 2) control diet with supplemented minerals to meet the mineral requirements of growing beef steers (NRC, 2016); 3) Cu, Mg, Zn, and Se concentrations supplemented at twice the concentration of the control diet. After dietary treatments were applied for the 4-wk long growing phase, steers were offered a common finishing diet until reaching a similar backfat thickness until harvest. Feedlot performance and carcass data were analyzed in SAS with pen as the experimental unit in the following model: Yij = μ+Di+wj+eij, where Di was the fixed effect of diet, wj was the random effect of weight block, and eij was the random error. No significant (P > 0.35) treatment effects were found for feedlot performance and carcass measurements. The feedstuffs in the basal diet may have contained sufficient concentrations of antioxidant minerals to meet the mineral requirements of the steers and mask differences in marbling. Additionally, offering a similar diet during the finishing period may have resulted in compensatory marbling growth, which offset marbling differences after the growing phase and resulted in uniform marbling accumulation across dietary treatments.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 141-142
Author(s):  
Dathan Smerchek ◽  
Zachary K Smith

Abstract Two-hundred and forty English × Continental beef steers (initial BW=365 kg [SD 22.5]) were used in a randomized complete block design to evaluate the effects of bedding application during a 36 d feedlot receiving phase on growth performance and efficiency during winter. Steers were allotted to 30 pens (n = 8 steers/pen) at the Ruminant Nutrition Center in Brookings, SD and pens were assigned to 1 of 2 treatments: 1) No bedding applied (NO) or 2) 1.8 kg (as-is basis) of wheat straw bedding/steer/d (BED). Due to the logistics of acquiring, weighing, and timely feeding of steers, the first 9 pen replicates began on test 14 d prior (begin: January 15, 2019 and end: February 20, 2019) to the last 6 pen replicates (begin: January 29, 2019 and end: March 6, 2019). Pen was the experimental unit; an α of 0.05 determined significance. Daily ambient temperature (n = 50) averaged -14.7°C [SD 5.63] and wind-chill (n = 50) averaged -17.7°C [SD 6.40]. Initial BW (365 vs. 365 ± 0.5 kg) and dry matter intake (8.19 vs. 8.22 ± 0.047 kg) did not differ (P ≥ 0.57) between NO and BED. End BW was greater for BED (P = 0.01; 419 vs. 402 ± 1.09 kg) compared to NO. Steers from BED had increased average daily gain (P = 0.01) by 48.0% and gain:feed (P = 0.01) by 49.2% over NO. Using tabular ingredient energy values and observed steer performance shrunk 4%, relative adjustments to metabolic rate were calculated. Estimated metabolic rate was elevated (P = 0.01) for NO (0.146 vs. 0.104 ± 0.0032 Mcal/BW0.75, kg). Bedding improves feedlot receiving phase growth and efficiency in eastern South Dakota during the winter. Under the environmental conditions of this experiment, steers have a 40.4% increased metabolic rate when bedding is not used and steers in bedded pens had a 35.1% increase in metabolic rate compared to (0.077 Mcal/BW0.75, kg).


2021 ◽  
Vol 99 (Supplement_1) ◽  
pp. 121-121
Author(s):  
Aubree M Beenken ◽  
Erin L Deters ◽  
Stephanie L Hansen

Abstract This study examined the effects of injectable vitamin C (VC) before transport and duration of transit on feedlot performance, inflammation, and muscle fatigue in cattle. One hundred thirty-one, Angus-cross steers (409 ± 4 kg) were stratified by bodyweight (BW) to a 2 × 2 factorial of intramuscular injection (INJ; 20 mL/steer): VC (250 mg sodium ascorbate/mL) or saline (SAL) and road transit duration (DUR): 18 (18; 1,770 km) or 8 h (8; 727 km). On d 0, steers were weighed and received INJ of SAL or VC immediately before transport. Upon return (d 1), BW and blood were collected before steers returned to pens with GrowSafe bunks. Steers were weighed on d 0, 1, 7, 15, 30, 31, 54, and 55. Data were analyzed via ProcMixed of SAS (experimental unit = steer; 32–34 steers/treatment) with fixed effects of INJ, DUR, and the interaction. Blood was collected on d -5, 1, 2, and 3 (9 steers/treatment); blood parameters were analyzed as repeated measures. Average daily gain (ADG) and BW were greater on d 7 and 15 for SAL-18 compared to all other treatments (INJ × DUR, P < 0.01). Final BW, overall ADG, and gain:feed were greater for 18 than 8 (P < 0.01). Injection did not affect BW (P > 0.13) but VC decreased overall dry matter intake compared to SAL (P = 0.03). Steers transported for 18 h had greater serum lactate, haptoglobin, and non-esterified fatty acid concentrations on d 1 compared to steers transported for 8 h (DUR × DAY, P < 0.01). Day 1 plasma ascorbate concentrations were greater for VC and returned to baseline concentrations by d 2 (INJ × DAY, P < 0.01). In contrast to previous work, VC did not improve post-transit performance; however, longer transit duration increased indicators of muscle fatigue and inflammation.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 446-446
Author(s):  
Andrea M Osorio ◽  
Kaue Tonelli Nardi ◽  
Igor Gomes Fávero ◽  
Kaliu G Scaranto Silva ◽  
Kymberly D Coello ◽  
...  

Abstract The effects of a nutritional packet on performance and carcass characteristics of feedlot beef steers were evaluated. Thirty Angus-crossbred steers (BW = 542 ± 8.4 kg) were used in a randomized complete block design and allocated into pens with SmartFeed (C-Lock; 15 steers/treatment). Steers were consuming a steam-flaked corn-based finishing-diet, ad libitum, for the last 65-d on feed prior to slaughter, in which treatments were: 1) control and 2) a nutritional-packet [0.29% DM basis; live yeast (Saccharomyces cerevisiae; 8.7 Log CFU/g); Vitamin C (5.4 g/kg); Vitamin B1 (13.33 g/kg); NaCl (80 g/kg); KCl (80 g/kg)]. Individual BW was recorded every 14 d and carcass quality data was collected at slaughter. Steer was considered the experimental unit. The MIXED procedure of SAS was used with the fixed effect of treatment and the random effect of block. Total DMI was unaffected (P = 0.610) by treatment from d 0–65; however, control steers had greater (P = 0.030) DMI from d 54–65. The G:F was unaffected (P = 0.830) by treatment from d 0–35; however, it was greater (P ≤ 0.001) for steers fed the nutritional packet from d 0–50, and 0–65. Treatment did not affect (P = 0.920) ADG from d 0–35, however it increased (P ≤ 0.001) ADG from d 0–50 and tended (P = 0.060) to increase ADG from d 0–65. Carcass adjusted final BW tended (P = 0.060) to increase by 28% for treated cattle, whereas the Longissimus dorsi area tended to decrease (P = 0.090). No differences (P = 0.240) were observed for fat thickness, while yield-grade (P = 0.03) increased for treated cattle. The nutritional packet appears to improve performance in the final days of feeding steers under intensive management, and energy partitioning may be altered to fat deposition.


Sign in / Sign up

Export Citation Format

Share Document