PSXII-8 Mitochondrial DNA diversity within domestic reindeer in Russia

2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 253-253
Author(s):  
Veronika R Kharzinova ◽  
Arsen V Dotsev ◽  
Nikolay V Bardukov ◽  
Tatiana E Deniskova ◽  
Maulik Upadhyay ◽  
...  

Abstract Domestic reindeer in Russia are a valuable resource of vital importance to the physical and cultural survival of the Northern indigenous minority. During the last decades, the mitochondrial (mt) genetic markers have been widely used as a molecular tool to investigate genetic structure and diversity of livestock species. Here we aimed at the assessing the mtDNA diversity of the domestic reindeer inhabiting the area from the Kola Peninsula in the west to the Chukotka region in the east. A complete cytochrome b (cytb) sequences (1,140 bp) from representatives of six populations, including Nenets (NEN, n = 16), Evenk (EVK, n = 12), Even (EVN, n = 6), Chukotka (CHU, n = 6), Chukotka-Khargin (CHUKH, n = 6) and Tuva (TUVA, n = 6) were obtained. Sequences’ alignment was conducted using MUSCLE algorithm in R package msa. In total, 34 haplotypes were identified. Median-joining network, constructed in PopART 1.7, revealed three major groups of haplotypes: the first one joined the samples of all the populations, the second one included NEN, EVN and CHUKH, and the third group was presented by the one sample of CHU. AMOVA, calculated in Arlequin 3.5.2.2, showed that only 9.58% of molecular variance could be explained by the differences between populations and 90.42% - within populations. Genetic diversity parameters calculated in DnaSP 6.12.03, demonstrated that average number of nucleotide differences (K) was highest in CHUKH (28.333) and EVN (27.409) and lowest in TUVA (4.533) and EVK (5.400). Nucleotide diversity (Pi) was 0.01238±0.00559, 0.00474±0.00091, 0.02404±0.00453, 0.01281±0.00464, 0.02485±0.00744, and 0.00398±0.00110 for NEN, EVK, EVN, CHU, CHUKH and TUVA, respectively. Our study demonstrated the lack of clear genetic structure of the studied reindeer populations in relation to cytb sequence. The level of genetic diversity was associated with census size and was lowest in the smallest Tuva population. This study was supported by RSF-21-16-00071 and Russian Ministry of Science and Higher Education-0445-2019-0024.

2007 ◽  
Vol 4 (17) ◽  
pp. 1093-1102 ◽  
Author(s):  
Alejandro F Rozenfeld ◽  
Sophie Arnaud-Haond ◽  
Emilio Hernández-García ◽  
Víctor M Eguíluz ◽  
Manuel A Matías ◽  
...  

Clonal reproduction characterizes a wide range of species including clonal plants in terrestrial and aquatic ecosystems, and clonal microbes such as bacteria and parasitic protozoa, with a key role in human health and ecosystem processes. Clonal organisms present a particular challenge in population genetics because, in addition to the possible existence of replicates of the same genotype in a given sample, some of the hypotheses and concepts underlying classical population genetics models are irreconcilable with clonality. The genetic structure and diversity of clonal populations were examined using a combination of new tools to analyse microsatellite data in the marine angiosperm Posidonia oceanica . These tools were based on examination of the frequency distribution of the genetic distance among ramets, termed the spectrum of genetic diversity (GDS), and of networks built on the basis of pairwise genetic distances among genets. Clonal growth and outcrossing are apparently dominant processes, whereas selfing and somatic mutations appear to be marginal, and the contribution of immigration seems to play a small role in adding genetic diversity to populations. The properties and topology of networks based on genetic distances showed a ‘small-world’ topology, characterized by a high degree of connectivity among nodes, and a substantial amount of substructure, revealing organization in subfamilies of closely related individuals. The combination of GDS and network tools proposed here helped in dissecting the influence of various evolutionary processes in shaping the intra-population genetic structure of the clonal organism investigated; these therefore represent promising analytical tools in population genetics.


2015 ◽  
Vol 2 (8) ◽  
pp. 140255 ◽  
Author(s):  
Claire C. Keely ◽  
Joshua M. Hale ◽  
Geoffrey W. Heard ◽  
Kirsten M. Parris ◽  
Joanna Sumner ◽  
...  

Two pervasive and fundamental impacts of urbanization are the loss and fragmentation of natural habitats. From a genetic perspective, these impacts manifest as reduced genetic diversity and ultimately reduced genetic viability. The growling grass frog ( Litoria raniformis ) is listed as vulnerable to extinction in Australia, and endangered in the state of Victoria. Remaining populations of this species in and around the city of Melbourne are threatened by habitat loss, degradation and fragmentation due to urban expansion. We used mitochondrial DNA (mtDNA) and microsatellites to study the genetic structure and diversity of L. raniformis across Melbourne's urban fringe, and also screened four nuclear gene regions (POMC, RAG-1, Rhod and CRYBA1). The mtDNA and nuclear DNA sequences revealed low levels of genetic diversity throughout remnant populations of L. raniformis . However, one of the four regions studied, Cardinia, exhibited relatively high genetic diversity and several unique haplotypes, suggesting this region should be recognized as a separate Management Unit. We discuss the implications of these results for the conservation of L. raniformis in urbanizing landscapes, particularly the potential risks and benefits of translocation, which remains a contentious management approach for this species.


2011 ◽  
Vol 149 (5) ◽  
pp. 617-624 ◽  
Author(s):  
P. SOENGAS ◽  
M. E. CARTEA ◽  
M. FRANCISCO ◽  
M. LEMA ◽  
P. VELASCO

SUMMARYBrassica rapa subsp. rapa L. includes three different crops: turnips (roots), turnip greens (leaves) and turnip tops (inflorescences). A collection of B. rapa subsp. rapa from north-western Spain is currently kept at ‘Misión Biológica de Galicia’ (a research centre of the Consejo Superior de Investigaciones Científicas (CSIC), Spain). This collection has been characterized based on morphological and agronomical traits. A better understanding of the genetic diversity present in the collection is necessary in order to optimize its use and maintenance. The objectives of the present work were to assess the genetic diversity present in the B. rapa subsp. rapa collection, to establish genetic relationships among populations and to study the genetic structure of the collection. Eighty populations were analysed based on 18 simple sequence repeats (SSRs). Populations showed a broad range of genetic diversity, thus offering good potential for further genetic improvement. Most of the variability was found within the population level, probably due to high rates of allogamy, to migration and/or interchange of seed among local growers. Populations showed a low level of differentiation, grouping in just one cluster, and therefore they can be considered as samples of a highly variable metapopulation that can be used for B. rapa breeding programmes.


2021 ◽  
Vol 10 (16) ◽  
pp. e187101623025
Author(s):  
Daniele Paula Maltezo ◽  
Julliane Dutra Medeiros ◽  
Ana Aparecida Bandini Rossi

The Amazon is the largest tropical forest in the world and is home to around 20% of all the biodiversity on the planet, among the species present in the Amazon is Copaifera langsdorffii, exploited mainly for the extraction of oil-resin and wood, often in ways incorrect, which can cause the loss of genetic variability. The aim of this study was to evaluate the genetic structure and diversity among individuals of C. langsdorffii located in Mato Grosso, Brazil, using ISSR markers. We sampled leaves from 27 adult individuals of C. langsdorffii, whose total genomic DNA was extracted. A total of 12 ISSR primers were used for the molecular characterization of the individuals. A grouping analysis was performed using the unweighted pair group method, Bayesian analysis and characterized by the genetic diversity. The genetic diversity among and within the groups was demonstrated by the AMOVA. As a result, 106 fragments were amplified and 98.11% were polymorphic. The polymorphic information content of each primer ranged from 0.45 to 0.81.  The dendrogram showed the formation of 4 distinct groups. The greatest genetic variability is found within the groups and not between them. The percentage of polymorphism, genetic dissimilarity values and genetic diversity indexes indicate that there is high genetic variability among Copaifera langsdorffii individuals, suggesting that ISSR primers were efficient in detecting polymorphism in this species and that the individuals have potential for compose programs aimed at the preservation of the species and the ability to integrate germplasm banks.


Genome ◽  
2013 ◽  
Vol 56 (7) ◽  
pp. 377-387 ◽  
Author(s):  
Juansheng Ren ◽  
Yuchao Yu ◽  
Fangyuan Gao ◽  
Lihua Zeng ◽  
Xianjun Lu ◽  
...  

Plant disease resistance gene analog (RGA) markers were designed according to the conserved sequence of known RGAs and used to map resistance genes. We used genome-wide RGA markers for genetic analyses of structure and diversity in a global rice germplasm collection. Of the 472 RGA markers, 138 were polymorphic and these were applied to 178 entries selected from the USDA rice core collection. Results from the RGA markers were similar between two methods, UPGMA and STRUCTURE. Additionally, the results from RGA markers in our study were agreeable with those previously reported from SSR markers, including cluster of ancestral classification, genetic diversity estimates, genetic relatedness, and cluster of geographic origins. These results suggest that RGA markers are applicable for analyses of genetic structure and diversity in rice. However, unlike SSR markers, the RGA markers failed to differentiate temperate japonica, tropical japonica, and aromatic subgroups. The restricted way for developing RGA markers from the cDNA sequence might limit the polymorphism of RGA markers in the genome, thus limiting the discriminatory power in comparison with SSR markers. Genetic differentiation obtained using RGA markers may be useful for defining genetic diversity of a suite of random R genes in plants, as many studies show a differentiation of resistance to a wide array of pathogens. They could also help to characterize the genetic structure and geographic distribution in crops, including rice, wheat, barley, and banana.


Genetics ◽  
2003 ◽  
Vol 165 (4) ◽  
pp. 2117-2128 ◽  
Author(s):  
Kejun Liu ◽  
Major Goodman ◽  
Spencer Muse ◽  
J Stephen Smith ◽  
Ed Buckler ◽  
...  

AbstractTwo hundred and sixty maize inbred lines, representative of the genetic diversity among essentially all public lines of importance to temperate breeding and many important tropical and subtropical lines, were assayed for polymorphism at 94 microsatellite loci. The 2039 alleles identified served as raw data for estimating genetic structure and diversity. A model-based clustering analysis placed the inbred lines in five clusters that correspond to major breeding groups plus a set of lines showing evidence of mixed origins. A “phylogenetic” tree was constructed to further assess the genetic structure of maize inbreds, showing good agreement with the pedigree information and the cluster analysis. Tropical and subtropical inbreds possess a greater number of alleles and greater gene diversity than their temperate counterparts. The temperate Stiff Stalk lines are on average the most divergent from all other inbred groups. Comparison of diversity in equivalent samples of inbreds and open-pollinated landraces revealed that maize inbreds capture <80% of the alleles in the landraces, suggesting that landraces can provide additional genetic diversity for maize breeding. The contributions of four different segments of the landrace gene pool to each inbred group's gene pool were estimated using a novel likelihood-based model. The estimates are largely consistent with known histories of the inbreds and indicate that tropical highland germplasm is poorly represented in maize inbreds. Core sets of inbreds that capture maximal allelic richness were defined. These or similar core sets can be used for a variety of genetic applications in maize.


Insects ◽  
2018 ◽  
Vol 9 (4) ◽  
pp. 143 ◽  
Author(s):  
Nikola Lacković ◽  
Milan Pernek ◽  
Coralie Bertheau ◽  
Damjan Franjević ◽  
Christian Stauffer ◽  
...  

The gypsy moth, Lymantria dispar, a prominent polyphagous species native to Eurasia, causes severe impacts in deciduous forests during irregular periodical outbreaks. This study aimed to describe the genetic structure and diversity among European gypsy moth populations. Analysis of about 500 individuals using a partial region of the mitochondrial COI gene, L. dispar was characterized by low genetic diversity, limited population structure, and strong evidence that all extant haplogroups arose via a single Holocene population expansion event. Overall 60 haplotypes connected to a single parsimony network were detected and genetic diversity was highest for the coastal populations Croatia, Italy, and France, while lowest in continental populations. Phylogenetic reconstruction resulted in three groups that were geographically located in Central Europe, Dinaric Alps, and the Balkan Peninsula. In addition to recent events, the genetic structure reflects strong gene flow and the ability of gypsy moth to feed on about 400 deciduous and conifer species. Distinct genetic groups were detected in populations from Georgia. This remote population exhibited haplotypes intermediate to the European L. dispar dispar, Asian L. dispar asiatica, and L. dispar japonica clusters, highlighting this area as a possible hybridization zone of this species for future studies applying genomic approaches.


2016 ◽  
Vol 64 (6) ◽  
pp. 375
Author(s):  
Lei Stanley Tang ◽  
Carolyn Smith-Keune ◽  
Anthony C. Grice ◽  
James M. Moloney ◽  
Britta Denise Hardesty

Understanding the patterns of population connectivity and level of genetic diversity can facilitate the identification of both ecologically relevant populations and the spatial scales at which conservation management may need to focus. We quantified genetic variation within and among populations of black-throated finches across their current distribution. To quantify genetic structure and diversity, we genotyped 242 individuals from four populations using 14 polymorphic microsatellite markers and sequenced 25 individuals based on a 302-base-pair segment of mitochondrial control region. We found modest levels of genetic diversity (average allelic richness r = 4.37 ± 0.41 (standard error) and average heterozygosity HO = 0.42 ± 0.040 (standard error)) with no bottleneck signature among sampled populations. We identified two genetic groups that represent populations of two subspecies based on Bayesian clustering analysis and low levels of genetic differentiation based on pairwise genetic differentiation statistics (all FST, RST and Nei’s unbiased D values <0.1). Our data suggest that genetic exchange occurs among sampled populations despite recent population declines. Conservation efforts that focus on maintaining habitat connectivity and increasing habitat quality to ensure a high level of gene flow on a larger scale will improve the species’ ability to persist in changing landscapes. Conservation management should also support continuous monitoring of the bird to identify any rapid population declines as land-use intensification occurs throughout the species’ range.


2012 ◽  
Vol 10 (1-2) ◽  
pp. 59-66
Author(s):  
Ayumi Okada ◽  
◽  
Takehiko Y. Ito ◽  
Bayarbaatar Buuveibaatar ◽  
Badamjav Lhagvasuren ◽  
...  

The Mongolian gazelle (Procapra gutturosa) is a representative ungulate species of Mongolia that inhabits steppes. Their number and range decreased during the last century, and the population has been suffered from occasional demographic changes caused by human and environmental factors. During the summer of 2005, we obtained genetic samples from gazelle carcasses encountered along the international railroad between Russia and China, to examine genetic diversity and its changes in relation to historical demographic shifts. Gazelle genetic structure and diversity were investigated using mitochondrial control region sequence. In the phylogenetic analysis, we confi rmed that there are two genetic groups unrelated to geographical location. We also showed the genetic structure of gazelles was unrelated to existence of the railroad. Based on the genetic diversity indices and demographic parameters, the population was suggested to have experienced demographic expansion historically, and effect of known demographic decline was not detected.


2020 ◽  
Vol 153 (1) ◽  
pp. 82-100
Author(s):  
Jean-Pierre Labouisse ◽  
Philippe Cubry ◽  
Frédéric Austerlitz ◽  
Ronan Rivallan ◽  
Hong Anh Nguyen

Backgrounds and aims – Previous studies showed that robusta coffee (Coffea canephora Pierre ex A.Froehner), one of the two cultivated coffee species worldwide, can be classified in two genetic groups: the Guinean group originating in Upper Guinea and the Congolese group in Lower Guinea and Congolia. Although C. canephora of the Guinean group is an important resource for genetic improvement of robusta coffee, its germplasm is under-represented in ex situ gene banks and its genetic diversity and population structure have not yet been investigated. Methods – To overcome the limitations of living collections, we explored old herbarium specimens collected in Guinea and Côte d’Ivoire and conserved at the Muséum National d’Histoire Naturelle, Paris. First, we reviewed the history of collection missions in both countries and how the C. canephora herbaria from the Muséum were assembled. Then, using 23 nuclear microsatellite markers, factorial and model-based Bayesian analyses, we investigated the genetic diversity of 126 specimens and 36 controls, analysed their distribution among the Congolese and Guinean groups, and estimated admixture proportions for each individual.Key results – For the first time, we detected population genetic structure within the Guinean group of C. canephora. The Guinean genotypes can be assigned to five sub-groups with distinct geographic distribution, especially in Guinea where two sub-groups (Maclaudii and Gamé) are characterized by a low level of admixture due to geographical isolation.Conclusions – We showed how combining a literature review and genetic data from old herbarium specimens can shed light on previous observations made by botanists and guide further actions to better preserve native coffee plants in forest remnants of West Africa.


Sign in / Sign up

Export Citation Format

Share Document