scholarly journals Associations of Natural Variation in the CD163 and Other Candidate Genes on Host Response of Nursery Pigs to PRRSV Infection

Author(s):  
Q Dong ◽  
J Dunkelberger ◽  
K S Lim ◽  
J K Lunney ◽  
C K Tuggle ◽  
...  

Abstract Pigs with complete resistance to porcine reproductive and respiratory syndrome (PRRS) virus (PRRSV) have been produced by genetically knocking out the CD163 gene, which encodes a receptor of the PRRSV for entry into macrophages. The objectives of this study were to evaluate associations of naturally occurring SNPs in the CD163 gene and in three other candidate genes (CD169, RGS16, and TRAF1) with host response to PRRSV-only infection and to PRRS vaccination and PRRSV/porcine circovirus 2b (PCV2b) co-infection. SNPs in the CD163 gene were not included on SNP genotyping panels that were used for previous genome-wide association analyses of these data. An additional objective was to identify the potential genetic interaction of variants at these four candidate genes with a mutation in the GBP5 gene that was previously identified to be associated with host response to PRRSV infection. Finally, the association of SNPs with expression level of the nearby gene was tested. Several SNPs in the CD163, CD169, and RGS16 genes were significantly associated with host response under PRRSV-only and/or PRRSV/PCV2b co-infection. The effect of all SNPs that were significant in the PRRSV-only infection trials depended on genetic background. The effects of some SNPs in the CD163, CD169, and RGS16 genes depended on genotype at the putative causative mutation in the GBP5 gene, which indicates a potential biological interaction of these genes with GBP5. In addition, genome-wide association results for the PRRSV-only infection trials revealed that SNPs located in the CDK5RAP2 or MEGF9 genes, near the TRAF1 gene, had suggestive effects on PRRS viral load, which indicates that these SNPs might contribute to PRRSV neuropathogenesis. In conclusion, natural genetic variants in the CD163, CD169, and RGS16 genes are associated with resistance to PRRSV and/or PCV2b infection and appear to interact with the resistance quantitative trait locus in the GBP5 gene. The identified SNPs can be used to select for increased natural resistance to PRRSV and/or PRRSV-PCV2b co-infection.

Genes ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 893 ◽  
Author(s):  
Elaine Norton ◽  
Nichol Schultz ◽  
Ray Geor ◽  
Dianne McFarlane ◽  
James Mickelson ◽  
...  

Equine metabolic syndrome (EMS) is a complex trait for which few genetic studies have been published. Our study objectives were to perform within breed genome-wide association analyses (GWA) to identify associated loci in two high-risk breeds, coupled with meta-analysis to identify shared and unique loci between breeds. GWA for 12 EMS traits identified 303 and 142 associated genomic regions in 264 Welsh ponies and 286 Morgan horses, respectively. Meta-analysis demonstrated that 65 GWA regions were shared across breeds. Region boundaries were defined based on a fixed-size or the breakdown of linkage disequilibrium, and prioritized if they were: shared between breeds or across traits (high priority), identified in a single GWA cohort (medium priority), or shared across traits with no SNPs reaching genome-wide significance (low priority), resulting in 56 high, 26 medium, and seven low priority regions including 1853 candidate genes in the Welsh ponies; and 39 high, eight medium, and nine low priority regions including 1167 candidate genes in the Morgans. The prioritized regions contained protein-coding genes which were functionally enriched for pathways associated with inflammation, glucose metabolism, or lipid metabolism. These data demonstrate that EMS is a polygenic trait with breed-specific risk alleles as well as those shared across breeds.


PLoS ONE ◽  
2015 ◽  
Vol 10 (5) ◽  
pp. e0126986 ◽  
Author(s):  
Mirjam Appel ◽  
Claus-Jürgen Scholz ◽  
Tobias Müller ◽  
Marcus Dittrich ◽  
Christian König ◽  
...  

Genes ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 767
Author(s):  
Justine M. Galliou ◽  
Jennifer N. Kiser ◽  
Kayleen F. Oliver ◽  
Christopher M. Seabury ◽  
Joao G. N. Moraes ◽  
...  

Heifer conception rate (HCR) is defined as the percentage of inseminated heifers that become pregnant at each service. The genome-wide association analyses in this study focused on identifying the loci associated with Holstein heifer (n = 2013) conception rate at first service (HCR1) and the number of times bred (TBRD) to achieve a pregnancy. There were 348 unique loci associated (p < 5 × 10−8) with HCR1 and 615 unique loci associated (p < 5 × 10−8) with TBRD. The two phenotypes shared 302 loci, and 56 loci were validated in independent cattle populations. There were 52 transcription factor binding sites (TFBS) and 552 positional candidate genes identified in the HCR1- and TBRD-associated loci. The positional candidate genes and the TFBS associated with HCR1 and TBRD were used in the ingenuity pathway analysis (IPA). In the IPA, 11 pathways, 207 master regulators and 11 upstream regulators were associated (p < 1.23 × 10−5) with HCR1 and TBRD. The validated loci associated with both HCR1 and TBRD make good candidates for genomic selection and further investigations to elucidate the mechanisms associated with subfertility and infertility.


Animals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 192
Author(s):  
Xinghai Duan ◽  
Bingxing An ◽  
Lili Du ◽  
Tianpeng Chang ◽  
Mang Liang ◽  
...  

The objective of the present study was to perform a genome-wide association study (GWAS) for growth curve parameters using nonlinear models that fit original weight–age records. In this study, data from 808 Chinese Simmental beef cattle that were weighed at 0, 6, 12, and 18 months of age were used to fit the growth curve. The Gompertz model showed the highest coefficient of determination (R2 = 0.954). The parameters’ mature body weight (A), time-scale parameter (b), and maturity rate (K) were treated as phenotypes for single-trait GWAS and multi-trait GWAS. In total, 9, 49, and 7 significant SNPs associated with A, b, and K were identified by single-trait GWAS; 22 significant single nucleotide polymorphisms (SNPs) were identified by multi-trait GWAS. Among them, we observed several candidate genes, including PLIN3, KCNS3, TMCO1, PRKAG3, ANGPTL2, IGF-1, SHISA9, and STK3, which were previously reported to associate with growth and development. Further research for these candidate genes may be useful for exploring the full genetic architecture underlying growth and development traits in livestock.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Shenping Zhou ◽  
Rongrong Ding ◽  
Fanming Meng ◽  
Xingwang Wang ◽  
Zhanwei Zhuang ◽  
...  

Abstract Background Average daily gain (ADG) and lean meat percentage (LMP) are the main production performance indicators of pigs. Nevertheless, the genetic architecture of ADG and LMP is still elusive. Here, we conducted genome-wide association studies (GWAS) and meta-analysis for ADG and LMP in 3770 American and 2090 Canadian Duroc pigs. Results In the American Duroc pigs, one novel pleiotropic quantitative trait locus (QTL) on Sus scrofa chromosome 1 (SSC1) was identified to be associated with ADG and LMP, which spans 2.53 Mb (from 159.66 to 162.19 Mb). In the Canadian Duroc pigs, two novel QTLs on SSC1 were detected for LMP, which were situated in 3.86 Mb (from 157.99 to 161.85 Mb) and 555 kb (from 37.63 to 38.19 Mb) regions. The meta-analysis identified ten and 20 additional SNPs for ADG and LMP, respectively. Finally, four genes (PHLPP1, STC1, DYRK1B, and PIK3C2A) were detected to be associated with ADG and/or LMP. Further bioinformatics analysis showed that the candidate genes for ADG are mainly involved in bone growth and development, whereas the candidate genes for LMP mainly participated in adipose tissue and muscle tissue growth and development. Conclusions We performed GWAS and meta-analysis for ADG and LMP based on a large sample size consisting of two Duroc pig populations. One pleiotropic QTL that shared a 2.19 Mb haplotype block from 159.66 to 161.85 Mb on SSC1 was found to affect ADG and LMP in the two Duroc pig populations. Furthermore, the combination of single-population and meta-analysis of GWAS improved the efficiency of detecting additional SNPs for the analyzed traits. Our results provide new insights into the genetic architecture of ADG and LMP traits in pigs. Moreover, some significant SNPs associated with ADG and/or LMP in this study may be useful for marker-assisted selection in pig breeding.


Agriculture ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 318
Author(s):  
Tae-Ho Ham ◽  
Yebin Kwon ◽  
Yoonjung Lee ◽  
Jisu Choi ◽  
Joohyun Lee

We conducted a genome-wide association study (GWAS) of cold tolerance in a collection of 127 rice accessions, including 57 Korean landraces at the seedling stage. Cold tolerance of rice seedlings was evaluated in a growth chamber under controlled conditions and scored on a 0–9 scale, based on their low-temperature response and subsequent recovery. GWAS, together with principal component analysis (PCA) and kinship matrix analysis, revealed four quantitative trait loci (QTLs) on chromosomes 1, 4, and 5 that explained 16.5% to 18.5% of the variance in cold tolerance. The genomic region underlying the QTL on chromosome four overlapped with a previously reported QTL associated with cold tolerance in rice seedlings. Similarly, one of the QTLs identified on chromosome five overlapped with a previously reported QTL associated with seedling vigor. Subsequent bioinformatic and haplotype analyses revealed three candidate genes affecting cold tolerance within the linkage disequilibrium (LD) block of these QTLs: Os01g0357800, encoding a pentatricopeptide repeat (PPR) domain-containing protein; Os05g0171300, encoding a plastidial ADP-glucose transporter; and Os05g0400200, encoding a retrotransposon protein, Ty1-copia subclass. The detected QTLs and further evaluation of these candidate genes in the future will provide strategies for developing cold-tolerant rice in breeding programs.


Sign in / Sign up

Export Citation Format

Share Document