scholarly journals PSIII-22 Chemical composition and in vitro fermentation characteristics of ancient grains using canine fecal inoculum

2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 273-273
Author(s):  
Zac Traughber ◽  
Fei He ◽  
Jolene Hoke ◽  
Gary Davenport ◽  
Maria R C de Godoy

Abstract In recent years, ancient grains have become popular sources of novel carbohydrates and fiber in pet foods. End-products of microbial fermentation (e.g. short-chain fatty acids) have been shown to be beneficial to the canine microbiome and overall host health. However, limited research exists on the fermentation characteristics of these increasingly popular grains. Thus, the aim of this study was to quantify the fermentative characteristics of select ancient grains in vitro using canine fecal inoculum. Five ancient grains, amaranth (AM), millet white proso (MWP), oat groats (OG), quinoa (QU), red millet (RM), were evaluated and compared to cellulose (CEL) and beet pulp (BP). Triplicate samples of each substrate were initially subjected to partial digestion of starch and protein to mimic in vivo conditions. They were then fermented for 0, 3, 6, 9, and 12 hours. All test substrates had acetate concentrations similar to that of BP after 6, 9, and 12 hrs. Amaranth, OG, and QU had significantly greater butyrate concentrations than BP and CEL after 6 hours, with all test ingredients having significantly higher butyrate concentrations after 9 and 12 hours. pH decreased significantly after 6 hours with further decreases seen after 9 and 12 hours for all substrates, except CEL. Amaranth, MWP, OG, and RM showed significantly greater pH reductions than CEL and BP, with QU performing similarly to BP. Overall, ancient grains show a moderate and beneficial fermentative profile with greater concentrations of butyrate compared with BP; a traditional and moderate fermentable fiber source used in pet foods. Future research should evaluate these substrates and their blends on gastrointestinal health and fecal quality in vivo.

2004 ◽  
Vol 87 (3) ◽  
pp. 787-791 ◽  
Author(s):  
Julie K Spears ◽  
George C Fahey

Abstract Companion animal dietsmay contain up to 50% starch, derived from cereal grains. The amount of resistant starch (RS) in an ingredient depends on the origin and form of the ingredient and on the processing conditions to which the ingredient has been exposed. Extrusion has proven to be a means of optimizing utilization of starch by companion animals. Although the RS fraction of starch typically decreases by extrusion, retrogradation can result in increased concentrations of this fraction. Limited research exists regarding the effects of RS in companion animal nutrition and gastrointestinal health. Existing in vitro and in vivo research indicates that certain RS sources are readily fermented in the large bowel, producing short-chain fatty acids, whereas others are less fermentable, resulting in excellent laxation properties. Feeding dogs a diet high in RS may result in an increase in fecal bulk due to an increased excretion of microbial matter in those cases where RS is highly fermentable, or to indigestibility of the RS source in other cases. RS has a role to play as a potential proxy for dietary fiber, especially for those companion animals fed diets high in protein and fat and devoid of traditional dietary fiber.


Author(s):  
Justin L. Caelson ◽  
Jennifer M. Erickson ◽  
Julie M. Hess ◽  
Trevor J. Gould ◽  
Joanne L. Slavin

Prebiotic dietary fiber supplements are commonly consumed to help meet fiber recommendations and improve gastrointestinal health by stimulating beneficial bacteria and the production of short-chain fatty acids (SCFAs), molecules beneficial to host health. The objective of this research project was to compare potential prebiotic effects and fermentability of five commonly consumed fibers using an in vitro fermentation system measuring changes in fecal microbiota, total gas production and formation of common SCFAs. Fecal donations were collected from three healthy volunteers. Materials analyzed included: pure beta-glucan, Oatwell (commercially available oat-bran containing 22% oat β-glucan), xylooligosaccharides (XOS), WholeFiber (dried chicory root containing inulin, pectin, and hemi/celluloses), and pure inulin. Oatwell had the highest production of propionate at 12 h (4.76 μmol/mL) compared to inulin, WholeFiber and XOS samples (p<0.03). Oatwell’s effect was similar to those of the pure beta-glucan samples, both samples promoted the highest mean propionate production at 24 h. XOS resulted in a significant increase in the genus Bifidobacterium after 24 h of fermentation (0 h: 0.67 OTUs; 24 h: 5.22 OTUs; p = 0.038). Inulin and WholeFiber increased the beneficial genus Collinsella, consistent with findings in clinical studies. All analyzed compounds were fermentable and promoted the formation of beneficial SCFAs.


2022 ◽  
Vol 8 ◽  
Author(s):  
Yu Bai ◽  
Xingjian Zhou ◽  
Jinbiao Zhao ◽  
Zhenyu Wang ◽  
Hao Ye ◽  
...  

Effects of different dietary fiber (DF) sources on short-chain fatty acids (SCFA) production and absorption in the hindgut of growing pigs were studied by an in vivo–vitro (ileal cannulated pigs and fecal inoculum-based fermentation) method. Thirty-six cannulated pigs (body weight: 48.5 ± 2.1 kg) were randomly allocated to 6 treatments containing the same DF content (16.5%), with either wheat bran (WB), corn bran (CB), sugar beet pulp (SBP), oat bran (OB), soybean hulls (SH), or rice bran (RB) as DF sources. Pigs were allowed 15 days for diet adaptation, and then, fresh ileal digesta and feces were collected to determine SCFA concentration which was normalized for food dry matter intake (DMI) and the hindgut DF fermentability. Fecal microbiota was inoculated into the freeze-dried ileal digesta samples to predict the ability of SCFA production and absorption in the hindgut by in vitro fermentation. The SH group had the largest concentration of total SCFA and propionate in ileal digesta and fecal samples of growing pigs (p < 0.05). Nonetheless, the predicted acetate, total SCFA production, absorption in the SBP group were the highest (p < 0.01), but the lowest in the OB group (p < 0.01) among all groups. Even SBP and OB group had a similar ratio of soluble DF (SDF) to insoluble DF (IDF). The CB group had high determined ileal and fecal butyrate concentration but the lowest butyrate production and absorption in the hindgut (p < 0.01). Overall, the source of DF had a great impact on the hindgut SCFA production and absorption, and SBP fiber had a great potential to increase hindgut SCFA production and absorption.


Author(s):  
Tindaro Bongiovanni ◽  
Marilyn Ong Li Yin ◽  
Liam Heaney

AbstractShort-chain fatty acids (SCFAs) are metabolites produced in the gut via microbial fermentation of dietary fibers referred to as microbiota-accessible carbohydrates (MACs). Acetate, propionate, and butyrate have been observed to regulate host dietary nutrient metabolism, energy balance, and local and systemic immune functions. In vitro and in vivo experiments have shown links between the presence of bacteria-derived SCFAs and host health through the blunting of inflammatory processes, as well as purported protection from the development of illness associated with respiratory infections. This bank of evidence suggests that SCFAs could be beneficial to enhance the athlete’s immunity, as well as act to improve exercise recovery via anti-inflammatory activity and to provide additional energy substrates for exercise performance. However, the mechanistic basis and applied evidence for these relationships in humans have yet to be fully established. In this narrative review, we explore the existing knowledge of SCFA synthesis and the functional importance of the gut microbiome composition to induce SCFA production. Further, changes in gut microbiota associated with exercise and various dietary MACs are described. Finally, we provide suggestions for future research and practical applications, including how these metabolites could be manipulated through dietary fiber intake to optimize immunity and energy metabolism.


Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1884
Author(s):  
Wanting Wang ◽  
Yiqiong Yuan ◽  
Jun Cao ◽  
Xuanri Shen ◽  
Chuan Li

This work aimed to investigate the in-vitro and in-vivo fermentation behaviors of Holothuria leucospilota Polysaccharides (HLP) and the impact on mouse liver antioxidant activity. HLP showed excellent fermentability during in vitro experiments, which was characterized by increased levels of total sugar consumption and short-chain fatty acids (SCFAs). During in vitro fecal fermentation, the fucose contents in the HLP fermentation products (0.174 mg/mL) were higher than those of xylose and galactosamine during the first three hours, and fucose disappeared after 24 h. The concentrations of the generated SCFAs increased to 111.13 mmol/mL after in-vitro fermentation at 48 h. After 28 days of oral administration, the SCFA contents that were detected in the feces of mice treated with high HLP doses were significantly higher than those in the feces of mice treated with lower doses and the normal group. In addition, histological observations demonstrated that HLP increased the number of goblet cells without causing hepatocellular injury. Moreover, the increased glutathione peroxidase (GSH-Px) and superoxidase dismutase (SOD) activities and decreased malondialdehyde (MDA) contents in the mouse livers treated with HLP suggested the good performance of HLP with respect to liver antioxidants.


2019 ◽  
Vol 78 (5) ◽  
pp. 343-363
Author(s):  
Renee Korczak ◽  
Megan Kocher ◽  
Kelly S Swanson

Abstract Oats are uniquely nutritious, owing to their composition of bioactive compounds, lipids, and β-glucan. Scientific research has established that oats can improve diet quality, reduce cholesterol, regulate satiety, and protect against carcinogenesis in the colon; however, determining the effects of oats on gastrointestinal health and the gut microbiome is a newer, evolving area of research. To better understand the effects of oats on gastrointestinal health in humans, a literature review with predefined search criteria was conducted using the PubMed database and keywords for common gastrointestinal health outcomes. Moreover, to examine the gastrointestinal effects of oats across the scientific spectrum, a similar search strategy was executed to identify animal studies. In vitro studies were identified from the reference lists of human and animal studies. A total of 8 human studies, 19 animal studies, and 5 in vitro studies met the inclusion criteria for this review. The evidence in humans shows beneficial effects of oats on gastrointestinal health, with supportive evidence provided by in vitro and animal studies. The effective dose of oats varies by type, although an amount providing 2.5 to 2.9 g of β-glucan per day was shown to decrease fecal pH and alter fecal bacteria. For oat bran, 40 to 100 g/d was shown to increase fecal bacterial mass and short-chain fatty acids in humans. Differences in study design, methodology, and type of oats tested make valid comparisons difficult. The identification of best practices for the design of oat studies should be a priority in future research, as the findings will be useful for determining how oats influence specific indices of gastrointestinal health, including the composition of the human gut microbiome.


Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 92-OR ◽  
Author(s):  
WEI HUANG ◽  
YONG XU ◽  
YOUHUA XU ◽  
LUPING ZHOU ◽  
CHENLIN GAO

2020 ◽  
Vol 44 (1) ◽  
Author(s):  
Oluwatosin Bode Omotoso ◽  
Mary Oluwafunmilayo Adeduntan ◽  
Adebowale Noah Fajemisin

Abstract Background The study highlighted the potential of three common and under-utilized tropical leguminous seeds (Tomentosa nilotica, Dioclea reflexa and Monodora myristica) to be used as supplementary feed to ruminant livestock. These seeds (their plants inclusive) are valuable sources of food and medicine for the prevention of illness and maintenance of human health. The medicinal properties of these seeds include antimicrobial, anti-inflammatory, anti-oxidant and immuno-stimulant. Trypsin inhibitors, which are common anti-nutritional factors in legumes and for monogastric animals, do not exert adverse effects in ruminants because they are degraded in the rumen. Hence, the crux of this study is to examine the effect of processing methods on the nutritional composition (proximate, fibre fractions, minerals, anti-nutrients) and in vitro digestibility of Tomentosa nilotica, Dioclea reflexa and Monodora myristica seeds and their suitability as feedstuff (protein sources) in small ruminant feed, particularly during off-season. Results From the results, raw Tomentosa nilotica and Monodora myristica have the highest crude protein (30.35% CP) and fat (22.40% EE), respectively. It is noteworthy that roasting best improve the mineral and significantly reduce the anti-nutrients observed in this study better compared to boiling and soaking methods. The highest organic matter digestibility, short-chain fatty acids, metabolizable energy and in vitro dry matter digestibility values were obtained in Dioclea reflexa compared to other test seeds. Roasting best improved the nutritive values, while Dioclea reflexa seed was rated highest for all the nutritional attributes and in vitro digestibility. Conclusions Dioclea reflexa could be incorporated in ruminants’ diet as protein source, particularly during the off-season, for improved ruminant production in Nigeria. However, in vivo study is therefore recommended to validate this report.


Foods ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 969
Author(s):  
Xingyi Jiang ◽  
Qinchun Rao

Fish allergy is a life-long food allergy whose prevalence is affected by many demographic factors. Currently, there is no cure for fish allergy, which can only be managed by strict avoidance of fish in the diet. According to the WHO/IUIS Allergen Nomenclature Sub-Committee, 12 fish proteins are recognized as allergens. Different processing (thermal and non-thermal) techniques are applied to fish and fishery products to reduce microorganisms, extend shelf life, and alter organoleptic/nutritional properties. In this concise review, the development of a consistent terminology for studying food protein immunogenicity, antigenicity, and allergenicity is proposed. It also summarizes that food processing may lead to a decrease, no change, or even increase in fish antigenicity and allergenicity due to the change of protein solubility, protein denaturation, and the modification of linear or conformational epitopes. Recent studies investigated the effect of processing on fish antigenicity/allergenicity and were mainly conducted on commonly consumed fish species and major fish allergens using in vitro methods. Future research areas such as novel fish species/allergens and ex vivo/in vivo evaluation methods would convey a comprehensive view of the relationship between processing and fish allergy.


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1386
Author(s):  
Zixin Yang ◽  
Ting Huang ◽  
Ping Li ◽  
Jian Ai ◽  
Jiaxin Liu ◽  
...  

The interactions between cell-wall polysaccharides and polyphenols in the gastrointestinal tract have attracted extensive attention. We hypothesized that dietary fiber modulates the fermentation patterns of cyanidin-3-O-glucoside (C3G) in a fiber-type-dependent manner. In the present study, the effects of four dietary fibers (fructose-oligosaccharides, pectin, β-glucan and arabinoxylan) on the modulation of C3G fermentation patterns were investigated through in vitro fermentation inoculated with human feces. The changes in gas volume, pH, total carbohydrate content, metabolites of C3G, antioxidant activity, and microbial community distribution during in vitro fermentation were analyzed. After 24 h of fermentation, the gas volume and total carbohydrate contents of the four dietary-fiber-supplemented groups respectively increased and decreased to varying degrees. The results showed that the C3G metabolites after in vitro fermentation mainly included cyanidin, protocatechuic acid, 2,4,6-trihydroxybenzoic acid, and 2,4,6-trihydroxybenzaldehyde. Supplementation of dietary fibers changed the proportions of C3G metabolites depending on the structures. Dietary fibers increased the production of short-chain fatty acids and the relative abundance of gut microbiota Bifidobacterium and Lactobacillus, thus potentially maintaining colonic health to a certain extent. In conclusion, the used dietary fibers modulate the fermentation patterns of C3G in a fiber-type-dependent manner.


Sign in / Sign up

Export Citation Format

Share Document