scholarly journals PSVIII-2 Effects of metformin on white adipose tissue transdifferentiation

2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 304-304
Author(s):  
Sarah Shelby ◽  
Saeed Ghnaimawi ◽  
Jinglong Chen ◽  
Yan Huang

Abstract Early piglet mortality due to chilling is a leading cause of economic loss in swine production. Non-shivering thermogenesis can be used by piglets to increase survivability through the utilization of brown adipose tissue (BAT). Recent studies suggest metformin hydrochloride induces “browning,” or transdifferentiation, of white adipocytes into brown adipocytes and increases BAT formation. Uncoupling proteins (UPC) are the principal markers of BAT. Sow treatment with metformin may increase BAT deposition in neonatal piglets. The objective of this study was to determine if metformin contributed to the expression of brown adipocyte markers UCP1, PRDM16, and PGC1α. To further investigate this, mouse 3T3 adipocyte cells were cultured, subdivided into two 6-well plates, and differentiated into mature white adipocytes. Oil Red O staining confirmed mature adipocytes with the presence of large lipid droplets. The experimental group was treated with 1.25 mM metformin hydrochloride (MET). The control group received only the growth medium (CON). The OD260nm/OD280nm was used to assess the quality of the extracted RNA. PCR analysis showed a significant difference in the expression of UCP1 of the MET cells (P < 0.05). PRDM16 and PGC1α expression showed no significant difference in the two groups (P > 0.10). These results indicate that metformin treatment at 1.25 mM contributed to the upregulation of UCP1 and the transdifferentiation of white adipocytes into brown adipocytes. This suggests the potential use of metformin in the upregulation of UCP to induce BAT formation.

2000 ◽  
Vol 279 (3) ◽  
pp. C670-C681 ◽  
Author(s):  
J. Himms-Hagen ◽  
A. Melnyk ◽  
M. C. Zingaretti ◽  
E. Ceresi ◽  
G. Barbatelli ◽  
...  

Multilocular, mitochondria-rich adipocytes appear in white adipose tissue (WAT) of rats treated with the β3-adrenoceptor agonist, CL-316243 (CL). Objectives were to determine whether these multilocular adipocytes derived from cells that already existed in the WAT or from proliferation of precursor cells and whether new mitochondria contained in them were typical brown adipocyte mitochondria. Use of 5-bromodeoxyuridine to identify cells that had undergone mitosis during the CL treatment showed that most multilocular cells derived from cells already present in the WAT. Morphological techniques showed that at least a subpopulation of unilocular adipocytes underwent conversion to multilocular mitochondria-rich adipocytes. A small proportion of multilocular adipocytes (∼8%) was positive for UCP1 by immunohistochemistry. Biochemical techniques showed that mitochondrial protein recovered from WAT increased 10-fold and protein isolated from brown adipose tissue (BAT) doubled in CL-treated rats. Stained gels showed a different protein composition of new mitochondria isolated from WAT from that of mitochondria isolated from BAT. Western blotting showed new mitochondria in WAT to contain both UCP1, but at a much lower concentration than in BAT mitochondria, and UCP3, at a higher concentration than that in BAT mitochondria. We hypothesize that multilocular adipocytes present at 7 days of CL treatment have two origins. First, most come from convertible unilocular adipocytes that become multilocular and make many mitochondria that contain UCP3. Second, some come from a cell that gives rise to more typical brown adipocytes that express UCP1.


2020 ◽  
Vol 21 (21) ◽  
pp. 7907
Author(s):  
Meike Dahlhaus ◽  
Julian Roos ◽  
Daniel Engel ◽  
Daniel Tews ◽  
Daniel Halbgebauer ◽  
...  

Brown adipose tissue (BAT) is a thermogenic organ in rodents and humans. In mice, the transplantation of BAT has been successfully used to combat obesity and its comorbidities. While such beneficial properties of BAT are now evident, the developmental and cellular origins of brown, beige, and white adipocytes have remained only poorly understood, especially in humans. We recently discovered that CD90 is highly expressed in stromal cells isolated from human white adipose tissue (WAT) compared to BAT. Here, we studied whether CD90 interferes with brown or white adipogenesis or white adipocyte beiging. We applied flow cytometric sorting of human adipose tissue stromal cells (ASCs), a CRISPR/Cas9 knockout strategy in the human Simpson-Golabi-Behmel syndrome (SGBS) adipocyte model system, as well as a siRNA approach in human approaches supports the hypothesis that CD90 affects brown or white adipogenesis or white adipocyte beiging in humans. Taken together, our findings call the conclusions drawn from previous studies, which claimed a central role of CD90 in adipocyte differentiation, into question.


Author(s):  
Fubiao Shi ◽  
Sheila Collins

Abstractβ-adrenergic receptors (βARs) are well established for conveying the signal from catecholamines to adipocytes. Acting through the second messenger cyclic adenosine monophosphate (cAMP) they stimulate lipolysis and also increase the activity of brown adipocytes and the ‘browning’ of adipocytes within white fat depots (so-called ‘brite’ or ‘beige’ adipocytes). Brown adipose tissue mitochondria are enriched with uncoupling protein 1 (UCP1), which is a regulated proton channel that allows the dissipation of chemical energy in the form of heat. The discovery of functional brown adipocytes in humans and inducible brown-like (‘beige’ or ‘brite’) adipocytes in rodents have suggested that recruitment and activation of these thermogenic adipocytes could be a promising strategy to increase energy expenditure for obesity therapy. More recently, the cardiac natriuretic peptides and their second messenger cyclic guanosine monophosphate (cGMP) have gained attention as a parallel signaling pathway in adipocytes, with some unique features. In this review, we begin with some important historical work that touches upon the regulation of brown adipocyte development and physiology. We then provide a synopsis of some recent advances in the signaling cascades from β-adrenergic agonists and natriuretic peptides to drive thermogenic gene expression in the adipocytes and how these two pathways converge at a number of unexpected points. Finally, moving from the physiologic hormonal signaling, we discuss yet another level of control downstream of these signals: the growing appreciation of the emerging roles of non-coding RNAs as important regulators of brown adipocyte formation and function. In this review, we discuss new developments in our understanding of the signaling mechanisms and factors including new secreted proteins and novel non-coding RNAs that control the function as well as the plasticity of the brown/beige adipose tissue as it responds to the energy needs and environmental conditions of the organism.


Endocrinology ◽  
2012 ◽  
Vol 153 (3) ◽  
pp. 1162-1173 ◽  
Author(s):  
Meritxell Rosell ◽  
Elayne Hondares ◽  
Sadahiko Iwamoto ◽  
Frank J. Gonzalez ◽  
Martin Wabitsch ◽  
...  

Retinol binding protein-4 (RBP4) is a serum protein involved in the transport of vitamin A. It is known to be produced by the liver and white adipose tissue. RBP4 release by white fat has been proposed to induce insulin resistance. We analyzed the regulation and production of RBP4 in brown adipose tissue. RBP4 gene expression is induced in brown fat from mice exposed to cold or treated with peroxisome proliferator-activated receptor (PPAR) agonists. In brown adipocytes in culture, norepinephrine, cAMP, and activators of PPARγ and PPARα induced RBP4 gene expression and RBP4 protein release. The induction of RBP4 gene expression by norepinephrine required intact PPAR-dependent pathways, as evidenced by impaired response of the RBP4 gene expression to norepinephrine in PPARα-null brown adipocytes or in the presence of inhibitors of PPARγ and PPARα. PPARγ and norepinephrine can also induce the RBP4 gene in white adipocytes, and overexpression of PPARα confers regulation by this PPAR subtype to white adipocytes. The RBP4 gene promoter transcription is activated by cAMP, PPARα, and PPARγ. This is mediated by a PPAR-responsive element capable of binding PPARα and PPARγ and required also for activation by cAMP. The induction of the RBP4 gene expression by norepinephrine in brown adipocytes is protein synthesis dependent and requires PPARγ-coactivator-1-α, which acts as a norepinephine-induced coactivator of PPAR on the RBP4 gene. We conclude that PPARγ- and PPARα-mediated signaling controls RBP4 gene expression and releases in brown adipose tissue, and thermogenic activation induces RBP4 gene expression in brown fat through mechanisms involving PPARγ-coactivator-1-α coactivation of PPAR signaling.


Endocrinology ◽  
2013 ◽  
Vol 154 (9) ◽  
pp. 2992-3000 ◽  
Author(s):  
Marta Giralt ◽  
Francesc Villarroya

Brown adipose tissue (BAT) is a major site of nonshivering thermogenesis in mammals. Rodent studies indicated that BAT thermogenic activity may protect against obesity. Recent findings using novel radiodiagnosis procedures revealed unanticipated high activity of BAT in adult humans. Moreover, complex processes of cell differentiation leading to the appearance of active brown adipocytes have been recently identified. The brown adipocytes clustered in defined anatomical BAT depots of rodents arise from mesenchymal precursor cells common to the myogenic cell lineage. They are being called “classical” or “developmentally programmed” brown adipocytes. However, brown adipocytes may appear after thermogenic stimuli at anatomical sites corresponding to white adipose tissue (WAT). This process is called the “browning” of WAT. The brown adipocytes appearing in WAT derive from precursor cells different from those in classical BAT and are closer to the white adipocyte cell lineage. The brown adipocytes appearing in WAT are often called “inducible, beige, or brite.” The appearance of these inducible brown adipocytes in WAT may also involve transdifferentiation processes of white-to-brown adipose cells. There is no evidence that the ultimate thermogenic function of the beige/brite adipocytes differs from that of classical brown adipocytes, although some genetic data in rodents suggest a relevant role of the browning process in protection against obesity. Although the activation of classical BAT and the browning process share common mechanisms of induction (eg, noradrenergic-mediated induction by cold), multiple novel adrenergic-independent endocrine factors that activate BAT and the browning of WAT have been identified recently. In adult humans, BAT is mainly composed of beige/brite adipocytes, although recent data indicate the persistence of classical BAT at some anatomical sites. Understanding the biological processes controlling brown adipocyte activity and differentiation could help the design of BAT-focused strategies to increase energy expenditure and fight against obesity.


2018 ◽  
Vol 124 (1) ◽  
pp. 99-108 ◽  
Author(s):  
Yuko Okamatsu-Ogura ◽  
Junko Nio-Kobayashi ◽  
Kazuki Nagaya ◽  
Ayumi Tsubota ◽  
Kazuhiro Kimura

To investigate the postnatal development of brown adipose tissue (BAT) in Syrian hamsters, we histologically examined interscapular fat tissue from 5–16-day-old pups, focusing on how brown adipocytes arise. Interscapular fat of 5-day-old hamsters mainly consisted of white adipocytes containing large unilocular lipid droplets, as observed in typical white adipose tissue (WAT). On day 7, clusters of small, proliferative nonadipocytes with a strong immunoreactivity for Ki67 appeared near the edge of the interscapular fat tissue. The area of the Ki67-positive regions expanded to ~50% of the total tissue area by day 10. The interscapular fat showed the typical BAT feature by day 16. A brown adipocyte-specific marker, uncoupling protein-1, was clearly detected on day 10 and thereafter, while not detected on day 7. During conversion of interscapular fat from WAT to BAT, unilocular adipocytes completely and rapidly disappeared without obvious apoptosis. Dual immunofluorescence staining for Ki67 and monocarboxylate transporter 1 (MCT1), another selective marker for brown adipocytes, revealed that most of the proliferating cells were of the brown adipocyte lineage. Electron microscopic examination showed that some of the white adipocytes contained small lipid droplets in addition to the large droplet and expressed MCT1 as do progenitor and mature brown adipocytes, implying a direct conversion from white to brown adipocytes. These results suggest that BAT of Syrian hamsters develops postnatally through two different pathways: the proliferation and differentiation of brown adipocyte progenitors and the conversion of unilocular adipocytes to multilocular brown adipocytes. NEW & NOTEWORTHY Brown and white adipose tissues (BAT and WAT, respectively) are quite different in morphological features and function; however, the boundary between these tissues is obscure. In this study, we histologically evaluated the process of BAT development in Syrian hamsters, which shows postnatal conversion of WAT to BAT. Our results suggest that brown adipocytes arise through two different pathways: the proliferation and differentiation of brown adipocyte progenitors and the conversion from white adipocytes.


2020 ◽  
Vol 40 (6) ◽  
Author(s):  
Pei-qi Wang ◽  
Dao-xiang Pan ◽  
Chun-qiu Hu ◽  
Yu-lin Zhu ◽  
Xiao-jing Liu

Abstract Our previous study showed that feeding mice with vitamin D deficiency diet markedly alleviated high-fat-diet-induced overweight, hyperinsulinemia, and hepatic lipid accumulation. Moreover, vitamin D deficiency up-regulated the expression of uncoupling protein 3 (Ucp3) in white adipose tissue (WAT) and brown adipose tissue (BAT). The present study aimed to further investigate the effects of vitamin D and vitamin D receptor (Vdr) on Ucp1–3 (Ucps) expression in brown adipocyte and the mechanism involved in it. Rat primary brown adipocytes were separated and purified. The effects of the 1,25(OH)2D3 (1,25-dihydroxyvitamin D3; the hormonal form of vitamin D) and Vdr system on Ucps expression in brown adipocytes were investigated in basal condition and activated condition by isoproterenol (ISO) and triiodothyronine (T3). Ucps expression levels were significantly down-regulated by 1,25(OH)2D3 in the activated brown adipocyte. Vdr silencing reversed the down-regulation of Ucps by 1,25(OH)2D3, whereas Vdr overexpression strengthened the down-regulation effects. Hairless protein did express in brown adipocyte and was localized in cell nuclei. 1,25(OH)2D3 increased Hairless protein expression in the cell nuclei. Hairless (Hr) silencing notably elevated Ucps expression in activated condition induced by ISO and T3. Moreover, immunoprecipitation results revealed that Vdr could interact with Hairless, which might contribute to decreasing expression of Vdr target gene Ucps. These data suggest that vitamin D suppresses expression of Ucps in brown adipocyte in a Vdr-dependent manner and the corepressor Hairless protein probably plays a role in the down-regulation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Carolin Muley ◽  
Stefan Kotschi ◽  
Alexander Bartelt

The acclimatization of brown adipose tissue (BAT) to sustained cold exposure requires an adaptive increase in proteasomal protein quality control. Ubiquilins represent a recently identified family of shuttle proteins with versatile functions in protein degradation, such as facilitating substrate targeting and proteasomal degradation. However, whether ubiquilins participate in brown adipocyte function has not been investigated so far. Here, we determine the role of ubiquilins for proteostasis and non-shivering thermogenesis in brown adipocytes. We found that Ubqln1, 2 and 4 are highly expressed in BAT and their expression was induced by cold and proteasomal inhibition. Surprisingly, silencing of ubiquilin gene expression (one or multiple in combinations) did not lead to aggravated ER stress or inflammation. Moreover, ubiquitin level and proteasomal activity under basal conditions were not impacted by loss of ubiquilins. Also, non-shivering thermogenesis measured by norepinephrine-induced respiration remained intact after loss of ubiquilins. In conclusion, ubiquilin proteins are highly abundant in BAT and regulated by cold, but they are dispensable for brown adipocyte proteostasis and thermogenesis.


2010 ◽  
Vol 298 (6) ◽  
pp. E1244-E1253 ◽  
Author(s):  
G. Barbatelli ◽  
I. Murano ◽  
L. Madsen ◽  
Q. Hao ◽  
M. Jimenez ◽  
...  

The origin of brown adipocytes arising in white adipose tissue (WAT) after cold acclimatization is unclear. Here, we demonstrate that several UCP1-immunoreactive brown adipocytes occurring in WAT after cold acclimatization have a mixed morphology (paucilocular adipocytes). These cells also had a mixed mitochondrioma with classic “brown” and “white” mitochondria, suggesting intermediate steps in the process of direct transformation of white into brown adipocytes (transdifferentiation). Quantitative electron microscopy disclosed that cold exposure (6°C for 10 days) did not induce an increase in WAT preadipocytes. β3-adrenoceptor-knockout mice had a blunted brown adipocyte occurrence upon cold acclimatization. Administration of the β3-adrenoceptor agonist CL316,243 induced the occurrence of brown adipocytes, with the typical morphological features found after cold acclimatization. In contrast, administration of the β1-adrenoceptor agonist xamoterol increased only the number of preadipocytes. These findings indicate that transdifferentiation depends on β3-adrenoceptor activation, whereas preadipocyte recruitment is mediated by β1-adrenoceptor. RT-qPCR experiments disclosed that cold exposure induced enhanced expression of the thermogenic genes and of genes expressed selectively in brown adipose tissue (iBAT) and in both interscapular BAT and WAT. β3-adrenoceptor suppression blunted their expression only in WAT. Furthermore, cold acclimatization induced an increased WAT expression of the gene coding for C/EBPα (an antimitotic protein), whereas Ccna1 expression (related to cell proliferation) was unchanged. Overall, our data strongly suggest that the cold-induced emergence of brown adipocytes in WAT predominantly reflects β3-adrenoceptor-mediated transdifferentiation.


1989 ◽  
Vol 263 (2) ◽  
pp. 341-345 ◽  
Author(s):  
J A Woodward ◽  
E D Saggerson

1. Rats were made hypothyroid by giving them a low-iodine diet with propylthiouracil for 4 weeks, or were made hyperthyroid by injection with tri-iodothyronine (T3) over a 3-day period. 2. Brown adipocytes were isolated from the interscapular depots of these animals or from their euthyroid controls, followed by isolation of mitochondria from the cells. 3. Relative to cell DNA content, hypothyroidism decreased the maximum binding (Bmax.) of [3H]GDP to mitochondria by 50%. T3 treatment increased binding by 37%. 4. These findings, which are discussed in relation to previously observed changes in brown adipose tissue after alteration of thyroid status, suggest that mitochondrial uncoupling for thermogenesis is less or more effective in hypothyroidism or hyperthyroidism respectively.


Sign in / Sign up

Export Citation Format

Share Document