scholarly journals Characterization of metabolic and inflammatory profiles of transition dairy cows fed an energy-restricted diet

2020 ◽  
Vol 98 (1) ◽  
Author(s):  
Giulia Esposito ◽  
Emiliano Raffrenato ◽  
Somwe D Lukamba ◽  
Mounir Adnane ◽  
Pete C Irons ◽  
...  

Abstract Periparturient diseases of dairy cows are caused by disproportionate energy metabolism, mineral imbalance, and perturbed immune function. The aim of the present study was to characterize metabolism, innate immune endometrial gene expression, and uterine microbial populations of transition animals receiving normal or restricted energy diets. Pregnant multiparous Holstein cows (n = 14) were randomly assigned to one of the two dietary treatments from 20 d prepartum until 35 d postpartum (DPP). One group was fed a diet providing 100% energy requirements (NE), whereas the other received an energy-restricted diet providing 80% energy requirements (RE). Feed intake, milk yield, body weight, body condition score, temperature, respiratory, and pulse rate were recorded. After calving, blood was collected weekly to analyze nonesterified fatty acids (NEFAs), β-hydroxybutyrate (BHB), and total cholesterol (TC). Endometrial cytobrushes were collected for gene expression analysis of inflammatory markers, microbial populations determination, and cytological evaluation. The restricted energy diet did not alter feed intake or milk yield but changed energy balance and metabolites levels (P < 0.05). In fact, RE animals had high NEFA and BHB levels, and low TC concentrations (P < 0.05). Moreover, RE animals had upregulated gene expression of serum amyloid A3 (SAA3) at 35 DPP (P < 0.05) and CXC chemokine receptor 2 (CXCR2) at 14 DPP (P < 0.01). Interleukin (IL) 1 and IL8 genes were downregulated 14 DPP but upregulated 35 DPP in RE animals, whereas IL6 and lipopolysaccharide-binding protein (LBP) genes were upregulated at 14 DPP (P ≤ 0.05). The most abundant phyla in RE animals (n = 3) were Bacteroidetes and Fusobacteria, whereas Proteobacteria was the least abundant at both 14 and 35 DPP. In conclusion, it can be speculated that energy balance is one of the main drivers for uterine inflammation by affecting metabolism, immune function, and uterine microbiota. However, these findings should be validated in a larger sample size.

2015 ◽  
Vol 13 (4) ◽  
pp. e0609 ◽  
Author(s):  
Farokh Kafilzadeh ◽  
Vahid Piri ◽  
Hamed Karami-Shabankareh

The aim of this study was to evaluate the glucogenic property of glycerol supplementation in the dairy cow’s diet. Sixty primiparous cows (control, n=30, and glycerol supplemented, n=30) were used to measure milk yield and components, blood hormone and metabolite profiles, and body condition score. Feed intake and apparent total-tract digestibility were also measured using 10 primiparous cows (control, n=5, and glycerol supplemented, n=5). Dry glycerol was top dressed at 250 g/day/cow from parturition to 21 days postpartum. Average feed intake, milk yield and components were not affected by glycerol supplementation. Apparent total–tract digestibility of organic matter and neutral detergent fibre were not influenced by dry glycerol supplementation, but lipid digestibility was greater (<em>p</em>=0.01) in cows fed glycerol. The serum concentration of glucose and insulin tended to be higher in dry glycerol-supplemented cows (<em>p</em>=0.1; <em>p</em>=0.06, respectively). While, serum concentrations of nonesterified fatty acids and <em>β</em>-hydroxybutyrate were not affected. Supplemented cows had lower body condition loss during weeks 1 to 5 after calving (<em>p=</em>0.09). The glucogenic effect of glycerol did not affect milk yield during the first 3 weeks of lactation. However, daily milk yield during the 13 weeks recording period was higher in the glycerol-supplemented cows (28.5 <em>vs</em>. 30.3 kg, <em>p&lt;</em>0.001). Percentages of cows cycling at the planned breeding date was greater (<em>p</em>=0.01) for cows fed dry glycerol. The results demonstrated that feeding dry glycerol as a glucogenic supply could be useful in saving body reserves and improving energy balance of primiparous Holstein dairy cows during the early postpartum period.


2019 ◽  
Vol 102 (8) ◽  
pp. 7204-7216 ◽  
Author(s):  
I. Harder ◽  
E. Stamer ◽  
W. Junge ◽  
G. Thaller

Dairy ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 684-694
Author(s):  
Lenka Krpálková ◽  
Niall O’Mahony ◽  
Anderson Carvalho ◽  
Sean Campbell ◽  
Gerard Corkery ◽  
...  

Identification of the associations of cow feed efficiency with feeding behaviour and milk production is important for supporting recommendations of strategies that optimise milk yield. The objective of this study was to identify associations between measures of feed efficiency, feed intake, feeding rate, rumination time, feeding time, and milk production using data collected from 26 dairy cows during a 3 month period in 2018. Cows averaged (mean ± standard deviation) 2.2 ± 1.7 lactations, 128 ± 40 days in milk, 27.5 ± 5.5 kg/day milk, 1.95 ± 0.69 kg feed/1 kg milk—the measure used to express feed conversion ratio (FCR), 575 ± 72 min/day rumination time, and 264 ± 67 min/day feeding time during the observation period. The coefficient of variation for rumination time (min/d) was 12.5%. A mixed linear model was selected for analyses. The most feed inefficient cows with the highest FCR (≥2.6 kg feed/1 kg milk) showed the lowest milk yield (24.8 kg/day), highest feed intake (78.8 kg), highest feeding rate (0.26 kg/min) and BCS (3.35 point). However, the relative milk yield (milk yield per 100 kg of body weight) was the highest (4.01 kg/day) in the most efficient group with the lowest FCR (≤1.4 kg feed/1 kg milk). Our study showed that the most efficient cows with the lowest FCR (≤1.4 kg feed/1 kg milk) had the highest rumination time (597 min/day; p < 0.05), feeding time (298 min/day; p < 0.05), rumination/activity ratio (4.39; p < 0.05) and rumination/feeding ratio (2.04; p < 0.05). Less active cows (activity time 164 min/day; p < 0.05) were the most efficient cows with the lowest FCR (≤1.4 kg feed/1 kg milk). The behavioural differences observed in this study provide new insight into the association of feed behaviour and feed efficiency with milk performance. Incorporating feeding behaviour into the dry matter intake model can improve its accuracy in the future and benefit breeding programmes.


2021 ◽  
pp. 2392-2396
Author(s):  
Sumpun Thammacharoen ◽  
Sapon Semsirmboon ◽  
Somchai Chanpongsang ◽  
Narongsak Chaiyabutr ◽  
Pawares Panyasomboonying ◽  
...  

Background and Aim: Metabolism and environment are closely related. Under high ambient temperature (HTa), dairy cows may have different energy metabolism during summer and winter. The present study was carried out to investigate the effect of HTa on the milk yield and blood concentration of beta-hydroxybutyrate (BHBA) and glucose at the herd level. Materials and Methods: One large dairy farm in Thailand with more than 100 crossbred Holstein cows milked each month was selected. The first experiment was performed on non-lactating cows to determine the normal daily concentrations of blood BHBA and glucose. Under the HTa condition, there was no significant change in blood BHBA and glucose concentrations. The second experiment was performed using a prospective cohort clinical design to demonstrate the seasonal effect on milk yield and blood BHBA as an indication of energy metabolism at the herd level. Results: The temperature and humidity index for the winter (78.1±0.5) and summer (83.4±0.7) periods differ significantly. The average milk yield during the winter period was 17.8% higher than during the summer period. The reduction of body condition score (BCS) during early lactation was significant in the winter cows. Both higher milk yield and lower BCS in the winter cows suggested a state of negative energy balance. However, there was no difference in blood BHBA and glucose concentrations between winter and summer cows. The effect of HTa on insulin signaling appeared to be a counterbalancing factor for the ketogenic status. Based on the present results, it would be interesting to further investigate the incidence of subclinical and clinical ketosis in a dairy farm under tropical conditions. Conclusion: The present experiment revealed that HTa during summer decreased milk yield in dairy cows fed under tropical conditions. Higher milk yield in winter caused a greater reduction of BCS and suggested a greater negative energy balance. However, there was no seasonal effect on blood BHBA and glucose concentrations.


2017 ◽  
Vol 6 (1) ◽  
pp. 26 ◽  
Author(s):  
Aqni Hanifa

<div class="Section1"><p class="Style1"><em>An experiment was conducted to study blood profile, milk yield and </em><em>liveweight gain of dairy cows as affected by dietary different quality of diets. The </em><em>experiment used </em><em>15 </em><em>lactating PFH were assigned into three treatments of diets and</em></p></div><em><br clear="all" /> </em><p class="Style1"><em> </em><em>five replication, three treatments of diets were </em><em>: </em><em>1) T1 (CP </em><em>12% dan TDN 65%); 2) T2 (CP 14% dan TDN 70%) dan 3) T3 (CP 16% dan TDN 75%).</em></p><p class="Style1"><em>The results of this experiment showed that the average of dry matter (DM) intake on Tl, T2 and T3 treatments were </em><em>8,59; </em><em>10,03 and </em><em>10,94 </em><em>kg/d, respectively </em><em>(P&lt;0,01). The average of crude protein intake (CP) on T1, </em><em>T2 and T3 treatments were 1,06; 1,44 and 1,71 kg/d (P&lt;0,01), also the average of TDN intake on T1, T2 and T3 treatments were 5,52; 6,86 and 8,02 kg/d (P&lt;0,01). The average of Hemoglobin (Hb) concentration on T1, T2 and T3 treatments were 10,21: 11,18 and 10,44 g/dl (P&gt;0,05), also the average of eritrosit value on TI, T2 and T3 treatments were 3,37; 3,73 and 3,48 million/mm<sup>3;</sup>, respectively (P&gt;0,05). The average of milk yield on T1, T2 and T3 treatments were 8,12; 11,29 and 13,42 l/d (P&lt;0,05). The average of liveweight gain on TI, T2 and T3 treatments were 81,66; 117,71 and 320,00 g/d (P&gt;0,05). </em></p><p class="Style1"><em>The conclusions of this research was the highest level of CP and </em><em>"1'DN </em><em>in </em><em>diets (CP 16% and </em><em>TDN 75%) showed that feed intake (DM, CP and TDN) and milk yield gave the best than other treatments. Different dietary quality of diets altered significant on feed intake (DM, CP and TDN) and milk yield, but the treatments did not affect on liveweight gain, Fib and eritrosit concentration.</em></p><p><em> </em></p><em>Key words :     diets quality, feed intake, blood profile, milk yield, liveweight gain, dairy cows</em>


2020 ◽  
Vol 87 (3) ◽  
pp. 334-340
Author(s):  
Elisa Manzocchi ◽  
Werner Hengartner ◽  
Michael Kreuzer ◽  
Katrin Giller

AbstractThis research paper addresses the hypotheses (1) that milk produced from hay-fed cows differs from that of silage-fed cows and (2) that silage type has an important impact, too. Four diets differing in forage type but with equal estimated milk production potential and a forage:concentrate ratio of 0.85 : 0.15 were compared regarding their effect on feed intake, milk yield and milk properties. The forages tested were hay, grass silage, conventional short-chopped and long-chopped maize silage subjected to a novel processing technology (Shredlage®). Twenty-four dairy cows were fed two of the four diets in two consecutive runs in an incomplete (4 × 2) Latin-square design (n = 12 per diet). Each experimental period lasted 22 d, with 12 d of adaptation and 10 d of sampling. During sampling, feed intake and milk yield were recorded daily, milk composition and coagulation properties were determined four times. The composition of the diet ingredients was analysed weekly. Data were analysed with a mixed model considering feed, period and their interaction as fixed effects. Stage of lactation, milk yield and milk composition from the pre-experimental period were used as covariates in the model. Dry matter intake was lower with the long-chopped processed maize silage compared to the other three groups. There were some diet differences in intakes of net energy for lactation and absorbable protein in the duodenum, but this did not result in changes in milk yield. The milk fat content was higher with the grassland-based diets compared to the maize silage diets. No treatment effect on milk acidity and rennet coagulation properties was observed. In conclusion, there were no indications for specific physico-chemical properties of milk from a hay-based diet, and maize processing technology was not of large effect either. Future investigations should focus on sensory differentiation of the milk produced with different forages.


2003 ◽  
Vol 86 (4) ◽  
pp. 1465-1471 ◽  
Author(s):  
S.C.L. Van Winden ◽  
R. Jorritsma ◽  
K.E. Müller ◽  
J.P.T.M. Noordhuizen

Sign in / Sign up

Export Citation Format

Share Document