Serum phenoloxidase activity in the hemolymph of the anomuran crab Albunea symmysta (Linnaeus, 1758) (Decapoda: Anomura: Albuneidae)

2021 ◽  
Vol 41 (1) ◽  
Author(s):  
Shanthi Sivakumar ◽  
Mullaivanam R Sivakumar ◽  
Rayvathy Balasubramanian

Abstract We characterized the optimal conditions for measuring serum phenoloxidase activity and its functional activity and susceptibility to an inhibitor and various activators in an anomuran crab, Albunea symmysta (Linnaeus, 1758). The substrate affinity of the phenoloxidase (PO) enzyme was determined using different phenolic substrates in which only diphenols were found to be oxidized. The enzyme was characterized as a catecholoxidase-type of PO and 3,4-dihydroxy-DL-phenylalanine (DL-Dopa), the enzyme showing the highest substrate affinity to the serum. The optimal enzyme activity was observed at 5 mM DL-Dopa in 10 mM Tris-HCl buffer at a pH of 7.5 at 25 °C for 10 min, and absorbance at 470 nm. Serum-PO activity was inhibited by 7 mM phenylthiourea (PTU), and activated by activators such as trypsin, chymotrypsin, pronase-E, and detergent-like sodium dodecyl sulfate (SDS). We also identified the chemicals causing in vitro inhibition or activation of the enzyme as a serum of the crab having a potent PO activity.

2021 ◽  
Vol 15 (1) ◽  
pp. 54
Author(s):  
Jelena Milinković Budinčić ◽  
Lidija Petrović ◽  
Ljiljana Đekić ◽  
Milijana Aleksić ◽  
Jadranka Fraj ◽  
...  

Microencapsulation of bioactive substances is a common strategy for their protection and release rate control. The use of chitosan (Ch) is particularly promising due to its abundance, biocompatibility, and interaction with anionic surfactants to form complexes of different characteristics with relevance for use in microcapsule wall design. In this study, Ch/sodium dodecyl sulfate (SDS) microcapsules, without and with cross-linking agent (formaldehyde (FA) or glutaraldehyde (GA)), were obtained by the spray drying of vitamin E loaded oil-in-water emulsion. All of the microcapsules had good stability during the drying process. Depending on the composition, their product yield, moisture content, and encapsulation efficiency varied between 11–34%, 1.14–1.62%, and 94–126%, respectively. SEM and FTIR analysis results indicate that SDS as well as cross-linkers significantly affected the microcapsule wall properties. The profiles of in vitro vitamin E release from the investigated microcapsules fit with the Korsmeyer-Peppas model (r2 > 0.9). The chemical structure of the anionic surfactant was found to have a significant effect on the vitamin E release mechanism. Ch/SDS coacervates may build a microcapsule wall without toxic crosslinkers. This enabled the combined diffusion/swelling based release mechanism of the encapsulated lipophilic substance, which can be considered favorable for utilization in food and pharmaceutical products.


2002 ◽  
Vol 46 (7) ◽  
pp. 2292-2298 ◽  
Author(s):  
Fred C. Krebs ◽  
Shendra R. Miller ◽  
Bradley J. Catalone ◽  
Raina Fichorova ◽  
Deborah Anderson ◽  
...  

ABSTRACT In experiments to assess the in vitro impact of the candidate microbicides nonoxynol 9 (N-9), C31G, and sodium dodecyl sulfate (SDS) on human immune and epithelial cell viability, cell lines and primary cell populations of lymphocytic and monocytic origin were generally shown to be equally sensitive to exposures ranging from 10 min to 48 h. However, U-937 cells were more sensitive to N-9 and C31G after 48 h than were primary monocyte-derived macrophages. Cytokine activation of monocytes and lymphocytes had no effect on cell viability following exposure to these microbicidal compounds. Primary and passaged vaginal epithelial cultures and cell lines differed in sensitivity to N-9 and C31G but not SDS. These studies provide a foundation for in vitro experiments in which cell lines of human immune and epithelial origin can be used as suitable surrogates for primary cells to further investigate the effects of microbicides on cell metabolism, membrane composition, and integrity and the effects of cell type, proliferation, and differentiation on microbicide sensitivity.


1996 ◽  
Vol 42 (6) ◽  
pp. 557-561 ◽  
Author(s):  
Terry W. Hill

Secreted endo-(1,4)-β-glucanases ("cellulases") of Achlya ambisexualis were analyzed by a technique that permits visualization of enzyme activity in situ after electrophoresis in gels containing sodium dodecyl sulfate. Catalytic polypeptides with molecular masses of about 97, 74, 36, 29, and 25 kDa were observed in media from young cultures, though progressively fewer bands were observed as cultures aged. Based on size estimations of native enzymes with gel exclusion chromatography, the 97- and 36-kDa polypeptides were concluded to be subunits of a 245-kDa holoenzyme and the 25-kDa polypeptides were concluded to be subunits of a second holoenzyme of about 92 kDa. The data were insufficient to allow similar assignments for the more ephemeral 74- and 29-kDa polypeptides. The endoglucanases secreted during branch induction by antheridiol or 0.2% peptone comigrated in electrophoretic gels with enzymes secreted during normal assimilative growth. No endoglucanases specific to induced branching were observed.Key words: oomycetes, cell walls, endoglucanases, cellulases, antheridiol.


2009 ◽  
Vol 79 (3) ◽  
pp. 188-194 ◽  
Author(s):  
Melda Sisecioglu ◽  
Murat Cankaya ◽  
Hasan Ozdemir

Objective: The present paper investigates the in vitro effect of L-ascorbic acid (vitamin C), menadione sodium bisulfate (vitamin K3), and folic acid on purified lactoperoxidase (LPO). Methods: This enzyme was purified from bovine milk by Amberlite CG 50 resin, CM Sephadex C-50 ion-exchange chromatography, and Sephadex G-100 gel filtration chromatography. Results: Rz (A412/A280) value for the purified LPO was found to be 0.8. Lactoperoxidase was purified 20.45-fold with a yield of 28.8 %. Purity of enzyme was checked by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) method and a single band was observed. All tested vitamins caused inhibition of the enzyme activity and displayed a competitive type of inhibition mechanism. IC50 values of these three vitamins were 2.03 µM, 0.025 mM, and 0.0925 mM, and the Ki constants were 0.508±0.257 µM, 0.0107±0.0044 mM, and 0.0218±0.0019 mM respectively. Conclusion: The vitamins discussed here displayed inhibition-type competition with LPO enzyme at varying concentrations. Our study showed that L-ascorbic acid exhibited a much higher inhibitory effect at lower concentrations, so it was evidently a more potent inhibitor than other vitamins tested.


1986 ◽  
Vol 6 (12) ◽  
pp. 4433-4439
Author(s):  
R E Swiderski ◽  
J D O'Connor

The induction of DOPA decarboxylase (DDC) activity by 20-OH-ecdysone (20-OHE) in a subline of Drosophila melanogaster Kc cells was investigated. Cells cultured in the continuous presence of the steroid hormone exhibited a 96-h temporal lag prior to a peak of DDC enzyme activity while arrested in the G2 phase of the cell cycle. The concentration of Ddc RNA increased sixfold between 72 and 96 h after initial exposure to hormone. Similarly, this increase was correlated temporally with a 26-fold increase in DDC enzyme activity. The Kc Ddc primary transcript, processing intermediate, and mature mRNA all were approximately 500 nucleotides longer than the corresponding transcripts observed for newly eclosed adult D. melanogaster. In vitro translation of poly(A)+ RNA from Kc cells resulted in an immunoprecipitable polypeptide which exhibited similar mobility on sodium dodecyl sulfate gels to that of DDC synthesized in vitro by larval epidermal poly(A)+ RNA.


1990 ◽  
Vol 10 (6) ◽  
pp. 3020-3026
Author(s):  
J E Ferrell ◽  
G S Martin

We have surveyed fibroblast lysates for protein kinases that might be involved in mitogenesis. The assay we have used exploits the ability of blotted, sodium dodecyl sulfate-denatured proteins to regain enzymatic activity after guanidine treatment. About 20 electrophoretically distinct protein kinases could be detected by this method in lysates from NIH 3T3 cells. One of the kinases, a 42-kilodalton serine(threonine) kinase (PK42), was found to possess two- to fourfold-higher in vitro activity when isolated from serum-stimulated cells than when isolated from serum-starved cells. This kinase comigrated on sodium dodecyl sulfate-gels with a protein (p42) whose phosphotyrosine content increased in response to serum stimulation. The time courses of p42 tyrosine phosphorylation and PK42 activation were similar, reaching maximal levels within 10 min and returning to basal levels within 5 h. Both p42 tyrosine phosphorylation and PK42 activation were stimulated by low concentrations of phorbol esters, and the responses of p42 and PK42 to TPA were abolished by chronic 12-O-tetradecanoylphorbol-13-acetate (TPA) treatment. Chronic TPA treatment had less effect on serum-induced p42 tyrosine phosphorylation and PK42 activation. PK42 and p42 bound to DEAE-cellulose, and both eluted at a salt concentration of 250 mM. Thus, PK42 and p42 comigrate and cochromatograph, and the kinase activity of PK42 correlates with the tyrosine phosphorylation of p42. These findings suggest that PK42 and p42 are related or identical, that PK42 is activated by tyrosine phosphorylation, and that this tyrosine phosphorylation can be regulated by protein kinase C.


1986 ◽  
Vol 6 (12) ◽  
pp. 4433-4439 ◽  
Author(s):  
R E Swiderski ◽  
J D O'Connor

The induction of DOPA decarboxylase (DDC) activity by 20-OH-ecdysone (20-OHE) in a subline of Drosophila melanogaster Kc cells was investigated. Cells cultured in the continuous presence of the steroid hormone exhibited a 96-h temporal lag prior to a peak of DDC enzyme activity while arrested in the G2 phase of the cell cycle. The concentration of Ddc RNA increased sixfold between 72 and 96 h after initial exposure to hormone. Similarly, this increase was correlated temporally with a 26-fold increase in DDC enzyme activity. The Kc Ddc primary transcript, processing intermediate, and mature mRNA all were approximately 500 nucleotides longer than the corresponding transcripts observed for newly eclosed adult D. melanogaster. In vitro translation of poly(A)+ RNA from Kc cells resulted in an immunoprecipitable polypeptide which exhibited similar mobility on sodium dodecyl sulfate gels to that of DDC synthesized in vitro by larval epidermal poly(A)+ RNA.


Sign in / Sign up

Export Citation Format

Share Document