Evaluation of the Entomogenous Nematode Neoaplectana carpocapsae (=Steinernema feltiae) Weiser (Rhabditida: Steinernematidae) and the Bacterium Bacillus thuringiensis Berliner var. kurstaki for Suppression of the Artichoke Plume Moth (Lepidoptera: Pterophoridae)

1984 ◽  
Vol 77 (1) ◽  
pp. 225-229 ◽  
Author(s):  
M. A. Barp ◽  
Harry K. Kaya
2019 ◽  
Vol 98 (8) ◽  
pp. 893-896
Author(s):  
Svetlana A. Roslavtseva

Mosquito control is necessary to improve the epidemic and, consequently, the sanitary and hygienic situation in human settlements. At the same time, the safest and more environmentally friendly way of controlling is not the fight against adult mosquitoes, but the treatment of reservoirs with microbiological larvicides based on entomopathogenic, aerobic, spore-forming, saprophytic bacteria Bacillus thuringiensis (de Barjac) (Bti). A new serotype of the bacterium B. thuringiensis was found in Israel in the Negev desert. This serotype being more active against larvae of blood-sucking and non-blood-sucking mosquitoes and midges than previously known serotypes, was named israelensis. Bti endotoxin is a typical insecticide with intestinal type of action for different mosquito species. For example, Bti H14 is highly insecticidal to the larvae of Aedes aegypti and Ae. albopictus at very low concentrations. The parasporal body (endotoxin crystal), a crystalline protein consisted of four main polypeptides and two minor polypeptides, possesses of a larvicidal action. Larvicidal activity is associated with a synergistic effect in a combination of four polypeptides. The possibility of development of resistance to products based on Bti and Bacillus sphaericus in populations of mosquitoes (Culicidae) was investigated. The use of domestic microbiological formulations based on Bti («Baktitsid», «Larviol-pasta», and «Antinat») was shown an eradication the larvae of bloodsucking mosquitoes and midges to be possible and rational, since they are not generated resistant populations of mosquitoes. This is confirmed by more than 30 years of the use of such formulations.


Molecules ◽  
2020 ◽  
Vol 25 (4) ◽  
pp. 872 ◽  
Author(s):  
Anna Dzionek ◽  
Danuta Wojcieszyńska ◽  
Małgorzata Adamczyk-Habrajska ◽  
Urszula Guzik

The naproxen-degrading bacterium Bacillus thuringiensis B1(2015b) was immobilised onto loofah sponge and introduced into lab-scale trickling filters. The trickling filters constructed for this study additionally contained stabilised microflora from a functioning wastewater treatment plant to assess the behavior of introduced immobilized biocatalyst in a fully functioning bioremediation system. The immobilised cells degraded naproxen (1 mg/L) faster in the presence of autochthonous microflora than in a monoculture trickling filter. There was also abundant colonization of the loofah sponges by the microorganisms from the system. Analysis of the influence of an acute, short-term naproxen exposure on the indigenous community revealed a significant drop in its diversity and qualitative composition. Bioaugmentation was also not neutral to the microflora. Introducing a new microorganism and increasing the removal of the pollutant caused changes in the microbial community structure and species composition. The incorporation of the immobilised B1(2015b) was successful and the introduced strain colonized the basic carrier in the trickling filter after the complete biodegradation of the naproxen. As a result, the bioremediation system could potentially be used to biodegrade naproxen in the future.


Insects ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 697
Author(s):  
Marie-Paule Nawrot-Esposito ◽  
Aurélie Babin ◽  
Matthieu Pasco ◽  
Marylène Poirié ◽  
Jean-Luc Gatti ◽  
...  

Bioinsecticides made from the bacterium Bacillus thuringiensis (Bt) are the bestselling bioinsecticide worldwide. Among Bt bioinsecticides, those based on the strain Bt subsp. kurstaki (Btk) are widely used in farming to specifically control pest lepidopteran larvae. Although there is much evidence of the lack of acute lethality of Btk products for non-target animals, only scarce data are available on their potential non-lethal developmental adverse effects. Using a concentration that could be reached in the field upon sprayings, we show that Btk products impair growth and developmental time of the non-target dipteran Drosophila melanogaster. We demonstrate that these effects are mediated by the synergy between Btk bacteria and Btk insecticidal toxins. We further show that Btk bioinsecticides trigger intestinal cell death and alter protein digestion without modifying the food intake and feeding behavior of the larvae. Interestingly, these harmful effects can be mitigated by a protein-rich diet or by adding the probiotic bacterium Lactobacillus plantarum into the food. Finally, we unravel two new cellular mechanisms allowing the larval midgut to maintain its integrity upon Btk aggression: First the flattening of surviving enterocytes and second, the generation of new immature cells arising from the adult midgut precursor cells. Together, these mechanisms participate to quickly fill in the holes left by the dying enterocytes.


1998 ◽  
Vol 62 (3) ◽  
pp. 775-806 ◽  
Author(s):  
E. Schnepf ◽  
N. Crickmore ◽  
J. Van Rie ◽  
D. Lereclus ◽  
J. Baum ◽  
...  

SUMMARY During the past decade the pesticidal bacterium Bacillus thuringiensis has been the subject of intensive research. These efforts have yielded considerable data about the complex relationships between the structure, mechanism of action, and genetics of the organism’s pesticidal crystal proteins, and a coherent picture of these relationships is beginning to emerge. Other studies have focused on the ecological role of the B. thuringiensis crystal proteins, their performance in agricultural and other natural settings, and the evolution of resistance mechanisms in target pests. Armed with this knowledge base and with the tools of modern biotechnology, researchers are now reporting promising results in engineering more-useful toxins and formulations, in creating transgenic plants that express pesticidal activity, and in constructing integrated management strategies to insure that these products are utilized with maximum efficiency and benefit.


2012 ◽  
Vol 5 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Gislayne Trindade Vilas-Bôas ◽  
Rita C. Alvarez ◽  
Clelton A. Dos Santos ◽  
Laurival A. Vilas-Boas

As proteínas Cry produzidas pela bactéria entomopatogênica Bacillus thuringiensis Berliner são bem conhecidas devido a alta citotoxicidade que exibem a uma variedade de insetos-alvo. O modo de ação destas proteínas é específico e torna os produtos à base de B. thuringiensis os mais amplamente utilizados em programas de controle biológico de pragas na agricultura e de importantes vetores de doenças humanas. Contudo, embora as proteínas Cry sejam os fatores de virulência inseto-específico mais conhecidos, linhagens de B. thuringiensis apresentam também uma ampla gama de fatores de virulência, os quais permitem à bactéria atingir a hemolinfa e colonizar eficientemente o inseto hospedeiro. Dentre estes fatores, destacam-se as proteínas Vip, Cyt, enterotoxinas, hemolisinas, fosfolipases, proteases, enzimas de degradação, além das recentemente descritas parasporinas. Essa revisão aborda a ação desses fatores de virulência, bem como a caracterização e o controle da expressão de seus genes. Adicionalmente, são discutidos aspectos relacionados ao nicho ecológico da bactéria com ênfase nas características envolvidas com a biossegurança da utilização dos produtos à base de B. thuringiensis para o controle biológico de insetos-alvo. Virulence Factors of Bacillus thuringiensis Berliner: Something Beyond of Cry Proteins? Abstract. The Cry proteins produced by the entomopathogenic bacterium Bacillus thuringiensis Berliner are widely known due to its high toxicity against a variety of insects. The mode of action of these proteins is specific and becomes B. thuringiensis-based products the most used in biological control programs of insect pests in agriculture and of important human disease vectors. However, while the Cry proteins are the best-known insect-specific virulence factor, strains of B. thuringiensis show also a wide range of other virulence factors, which allow the bacteria to achieve the hemolymph and colonize efficiently the insect host. Among these factors, we highlight the Vip proteins, Cyt, enterotoxins, hemolysins, phospholipases, proteases and enzymes of degradation, in addition to the recently described parasporin. This review explores the action of these virulence factors, as well as, the characterization and control of expression of their genes. Additionally, we discuss aspects related to the ecological niche of the bacteria with emphasis on the characteristics involved in the biosafety of the use of B. thuringiensis-based products for biological control of target insects.


1966 ◽  
Vol 46 (5) ◽  
pp. 497-499 ◽  
Author(s):  
C. J. S. Fox ◽  
R. P. Jaques

At Kentville, Nova Scotia, in 1963 and 1965, three biological insecticides were evaluated in the field for control of the imported cabbageworm, Pieris rapae (L.) (Lepidoptera:Pieridae). One or two spray treatments were applied at 9- or 14-day intervals. All treatments significantly reduced numbers of the insect. The bacterium Bacillus thuringiensis Berliner applied once gave the best control at first but in 1965 did not maintain adequate control to harvest. A granulosis virus was as effective as DDT followed by an application of mevinphos. The parasitic nematode DD136 gave control late in the season.


Sign in / Sign up

Export Citation Format

Share Document