scholarly journals Suboptimal Climate Policy

Author(s):  
John Hassler ◽  
Per Krusell ◽  
Conny Olovsson

Abstract There is a scientific consensus that human activities, in the form of emissions of carbon dioxide into the atmosphere, cause global warming. These emissions mostly occur in the marketplace, i.e., they are undertaken by private individuals and firms. Governments seeking to curb emissions thus need to design policies that influence market behavior in the direction of their goals. Economists refer to Pigou taxation as “the” solution here, since the case of global warming can be seen as a pure (negative) externality. We agree. However, given the reluctance of policymakers to agree with us, there is an urgent need to consider, and compare, suboptimal policies. In this paper we look at one such instance: setting a global tax on carbon at the wrong level. How costly are different errors? Since there is much uncertainty about how much climate change there will be, and how damaging it is when it occurs, ex-post errors will most likely be made. We compare different kinds of errors qualitatively and quantitatively and find that policy errors based on over-pessimistic views on climate change are much less costly than those made based on over-optimism. This finding is an inherent feature of standard integrated assessment models, even though these models do not feature tipping points or strong linearities.

2021 ◽  
pp. 17-23
Author(s):  
Szira Zoltán ◽  
Bárdos Kinga Ilona ◽  
Alghamdi Hani ◽  
Enkhjav Tumentsetseg ◽  
Erika Varga

2019 was Earth's second warmest year since 1850. In 2019 the global mean temperature was cooler than in 2016, but warmer than any other year explicitly measured. Consequently, 2016 is still the warmest year in historical observation history. Year-to-year rankings are likely to reflect natural fluctuations in the short term, but the overall pattern remains consistent with a long-term global warming trend. This would be predicted from global warming caused by greenhouse gases, temperature increase across the globe is broadly spread, impacting almost all areas of land and oceans. Climate change" and "global warming" are often used interchangeably but are of distinct significance. Global warming is the long-term heating of the Earth's climate system observed since the pre-industrial period as a result of human activities, mainly the combustion of fossil fuel, which raises the heat-trapping greenhouse gas levels in the Earth's air. The term is often used interchangeably with the term climate change, as the latter applies to warming caused both humanly and naturally, and the impact it has on our planet. This is most generally calculated as the average increase in global surface temperature on Earth. Carbon dioxide emission is one of the main reasons for global warming. Since the Industrial Revolution, human sources of carbon dioxide emissions have been growing. Human activities such as the burning of oil, coal and gas, as well as deforestation are the primary cause of the increased carbon dioxide concentrations in the atmosphere. In our research, let’s examine the relationship between the amount of carbon dioxide emissions and the GDP/capita in developed and developing countries.


This paper is focused on the relationship between ozone depletion and environmental climate change. Ozone (O3) depletion and global warming are not directly related to each other but have a common reason as pollutants released into the atmosphere by human activities which alter both phenomenal change. Global warming is incident of accumulation of higher level of carbon dioxide into the atmosphere when hydrocarbons are used to generate electricity to run vehicles. Carbon dioxide spreads around the earth like a cover which is mainly responsible for the absorption of infrared radiation as a heat. Ozone depletion occurs when chlorofluorocarbons (CFCs) and halon (halogen) gases are observed in aerosol. Practically, spray cans and refrigerants are the sources of CFCs. Ozone is available in the stratosphere and absorbs ultraviolet radiaton, which is very harmful to humans, animals and plants. By photochemical reaction ozone molecules are broken down by CFCs and halons, which are the primary substances in the chemical reactions, reducing ozone’s ultraviolet radiation-absorbing capacity.


2020 ◽  
Vol 10 (6) ◽  
pp. 2014 ◽  
Author(s):  
Mariano Pierantozzi ◽  
Sebastiano Tomassetti ◽  
Giovanni Di Nicola

The most commonly used refrigerants are potent greenhouse gasses that can contribute to climate change. Hydro-Fluoro-Olefins are low Global Warming Potential fluids. A summary of our experimental research activity on the thermodynamic properties of two environmentally friendly Hydro-Fluoro-Olefins, namely R1234yf and R1234ze(E), is reported. In particular, the measurements were performed with an isochoric apparatus and the apparatus specifically built to reach temperatures down to about 100 K. The data elaboration confirms the validity of the choice and that R1234yf and R1234ze(E) can be adopted in many domestic applications. Moreover, considering the reduction of the flammability issues of R1234yf and R1234ze(E), the properties of binary systems containing these fluids and carbon dioxide were analyzed. The presented mixtures could be very interesting for low-temperature applications such as cascade cycles.


2013 ◽  
Vol 39 (3) ◽  
pp. 115-126 ◽  
Author(s):  
Yucheng Cao ◽  
Ewelina Staszewska

Abstract Uncontrolled emissions of landfill gas may contribute significantly to climate change, since its composition represents a high fraction of methane, a greenhouse gas with 100- year global warming potential 25 times that of carbon dioxide. Landfill cover could create favourable conditions for methanotrophy (microbial methane oxidation), an activity of using bacteria to oxidize methane to carbon dioxide. This paper presents a brief review of methanotrophic activities in landfill cover. Emphasis is given to the effects of cover materials, environmental conditions and landfill vegetation on the methane oxidation potential, and to their underlying effect mechanisms. Methanotrophs communities and methane oxidation kinetics are also discussed. Results from the overview suggest that well-engineered landfill cover can substantially increase its potential for reducing emissions of methane produced in landfill to the atmosphere.


2008 ◽  
Vol 21 (23) ◽  
pp. 6141-6155 ◽  
Author(s):  
Graeme L. Stephens ◽  
Todd D. Ellis

Abstract This paper examines the controls on global precipitation that are evident in the transient experiments conducted using coupled climate models collected for the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). The change in precipitation, water vapor, clouds, and radiative heating of the atmosphere evident in the 1% increase in carbon dioxide until doubled (1pctto2x) scenario is examined. As noted in other studies, the ensemble-mean changes in water vapor as carbon dioxide is doubled occur at a rate similar to that predicted by the Clausius–Clapeyron relationship. The ratio of global changes in precipitation to global changes in water vapor offers some insight on how readily increased water vapor is converted into precipitation in modeled climate change. This ratio ɛ is introduced in this paper as a gross indicator of the global precipitation efficiency under global warming. The main findings of this paper are threefold. First, increases in the global precipitation track increase atmospheric radiative energy loss and the ratio of precipitation sensitivity to water vapor sensitivity is primarily determined by changes to this atmospheric column energy loss. A reference limit to this ratio is introduced as the rate at which the emission of radiation from the clear-sky atmosphere increases as water vapor increases. It is shown that the derived efficiency based on the simple ratio of precipitation to water vapor sensitivities of models in fact closely matches the sensitivity derived from simple energy balance arguments involving changes to water vapor emission alone. Second, although the rate of increase of clear-sky emission is the dominant factor in the change to the energy balance of the atmosphere, there are two important and offsetting processes that contribute to ɛ in the model simulations studied: One involves a negative feedback through cloud radiative heating that acts to reduce the efficiency; the other is the global reduction in sensible heating that counteracts the effects of the cloud feedback and increases the efficiency. These counteracting feedbacks only apply on the global scale. Third, the negative cloud radiative heating feedback occurs through reductions of cloud amount in the middle troposphere, defined as the layer between 680 and 440 hPa, and by slight global cloud decreases in the lower troposphere. These changes act in a manner to expose the warmer atmosphere below to high clouds, thus resulting in a net warming of the atmospheric column by clouds and a negative feedback on the precipitation.


2020 ◽  
Author(s):  
Edward A. Byers ◽  
Keywan Riahi ◽  
Elmar Kriegler ◽  
Volker Krey ◽  
Roberto Schaeffer ◽  
...  

<p>The assessment of long-term greenhouse gas emissions scenarios and societal transformation pathways is a key component of the IPCC Working Group 3 (WG3) on the Mitigation of Climate Change. A large scientific community, typically using integrated assessment models and econometric frameworks, supports this assessment in understanding both near-term actions and long-term policy responses and goals related to mitigating global warming. WG3 must systematically assess hundreds of scenarios from the literature to gain an in-depth understanding of long-term emissions pathways, across all sectors, leading to various levels of global warming. Systematic assessment and understanding the climate outcomes of each emissions scenario, requires coordinated processes which have developed over consecutive IPCC assessments. Here, we give an overview of the processes involved in the systematic assessment of long-term mitigation pathways as used in recent IPCC Assessments<sup>1</sup> and being further developed for the IPCC 6<sup>th</sup> Assessment Report (AR6). The presentation will explain how modelling teams can submit scenarios to AR6 and invite feedback to the process.</p><p>Following discussions amongst IPCC Lead Authors to define the scope of scenarios desired and variables requested, a call for scenarios to support AR6 was launched in September 2019. Modelling teams have registered and submitted scenarios through Autumn 2019 using a new and secure online submission portal, from which authorised Lead Authors can interrogate the scenarios interactively.</p><p>This analysis is underpinned by the open-source software pyam, a Python package specifically designed for analysis and visualisation of integrated assessment scenarios<sup>2</sup>. Submitted scenarios are automatically checked for errors and processed using a new climate assessment pipeline. The climate assessment involves infilling and harmonization<sup>3</sup> of emissions data, then the scenarios are processed through Simple Climate Models, using the OpenSCM framework<sup>4</sup>, to give probabilistic climate implications for each scenario – atmospheric concentrations, radiative forcing and global mean temperature. The climate assessment accounts for updated climate sensitivity estimates from CMIP6 and WG1,s scenarios are categorized according to climate outcomes and distinguish between timing and levels of net-negative emissions, emissions peak and temperature overshoot. Scenarios are also categorized by other indicators, for consistent use across WG3 chapters, such as: population and GDP; Primary and Final energy use; and shares of renewables, bioenergy and fossil fuels.</p><p>The automated framework also facilitates bolt-on analyses, such as estimating the population impacted by biophysical climate impacts<sup>5</sup>, and estimates of avoided damages with the social cost of carbon<sup>6</sup>.</p><p>Upon publication of the WG3 AR6 report, all scenario data used in the WG3 Assessment will be publicly available on a Scenario Explorer, an online tool for interrogating and visualizing the data that supports the report. In combination, this framework brings new levels of consistency, transparency and reproducibility to the assessment of scenarios in IPCC WG3 and will be a key resource for the climate community in understanding the main drivers of different transformation pathways.</p><ol><li>Huppmman et al 2018, Nature Climate Change</li> <li>Gidden and Huppmann, 2019, Journal of Open Source Software</li> <li>Gidden et al 2018 Environ. Model. Softw</li> <li>Nicholls et al 2020</li> <li>Byers et al 2018 Environmental Research Letters</li> <li>Ricke et al 2018 Nature Climate Change</li> </ol>


2003 ◽  
Vol 30 (3) ◽  
pp. 219-241 ◽  
Author(s):  
Adrian G. Glover ◽  
Craig R. Smith

The goal of this paper is to review current impacts of human activities on the deep-sea floor ecosystem, and to predict anthropogenic changes to this ecosystem by the year 2025. The deep-sea floor ecosystem is one of the largest on the planet, covering roughly 60% of the Earth's solid surface. Despite this vast size, our knowledge of the deep sea is poor relative to other marine ecosystems, and future human threats are difficult to predict. Low productivity, low physical energy, low biological rates, and the vastness of the soft-sediment deep sea create an unusual suite of conservation challenges relative to shallow water. The numerous, but widely spaced, island habitats of the deep ocean (for example seamounts, hydrothermal vents and submarine canyons) differ from typical deep-sea soft sediments in substrate type (hard) and levels of productivity (often high); these habitats will respond differently to anthropogenic impacts and climate change. The principal human threats to the deep sea are the disposal of wastes (structures, radioactive wastes, munitions and carbon dioxide), deep-sea fishing, oil and gas extraction, marine mineral extraction, and climate change. Current international regulations prohibit deep-sea dumping of structures, radioactive waste and munitions. Future disposal activities that could be significant by 2025 include deep-sea carbon-dioxide sequestration, sewage-sludge emplacement and dredge-spoil disposal. As fish stocks dwindle in the upper ocean, deep-sea fisheries are increasingly targeted. Most (perhaps all) of these deep-sea fisheries are not sustainable in the long term given current management practices; deep-sea fish are long-lived, slow growing and very slow to recruit in the face of sustained fishing pressure. Oil and gas exploitation has begun, and will continue, in deep water, creating significant localized impacts resulting mainly from accumulation of contaminated drill cuttings. Marine mineral extraction, in particular manganese nodule mining, represents one of the most significant conservation challenges in the deep sea. The vast spatial scales planned for nodule mining dwarf other potential direct human impacts. Nodule-mining disturbance will likely affect tens to hundreds of thousands of square kilometres with ecosystem recovery requiring many decades to millions of years (for nodule regrowth). Limited knowledge of the taxonomy, species structure, biogeography and basic natural history of deep-sea animals prevents accurate assessment of the risk of species extinctions from large-scale mining. While there are close linkages between benthic, pelagic and climatic processes, it is difficult to predict the impact of climate change on deep-sea benthic ecosystems; it is certain, however, that changes in primary production in surface waters will alter the standing stocks in the food-limited, deep-sea benthic. Long time-series studies from the abyssal North Pacific and North Atlantic suggest that even seemingly stable deep-sea ecosystems may exhibit change in key ecological parameters on decadal time scales. The causes of these decadal changes remain enigmatic. Compared to the rest of the planet, the bulk of the deep sea will probably remain relatively unimpacted by human activities and climate change in the year 2025. However, increased pressure on terrestrial resources will certainly lead to an expansion of direct human activities in the deep sea, and to direct and indirect environmental impacts. Because so little is known about this remote environment, the deep-sea ecosystem may well be substantially modified before its natural state is fully understood.


2008 ◽  
Vol 27 (4) ◽  
pp. 294-306 ◽  
Author(s):  
Gawie De Villiers ◽  
Giel Viljoen ◽  
Herman Booysen

According to the geological history of the earth, climate change is an integral part of environmental changes that occurred over time. Sufficient evidence is provided of recurrent wet and dry and cold and hot periods due to natural circumstances. Since the industrial revolution human activities increasingly contribute to air pollution by releasing huge volumes of carbon dioxide and other gasses into the atmosphere, so much so that it is generally accepted that increase in global warming the past decades is directly linked to human activities. Observable signs of human induced climate change include increasing average temperatures at many places, melting ice caps in polar areas, rising sea levels on a global scale and coastal disturbances and damages due to storm surges on coastal areas in various countries, also in South Africa. Consensus from a number of hydrological-meteorological circulation models show, for South Africa, a rise in average annual winter and summer temperatures of between 1.5 and 3.0 degrees Centigrade the following number of decades with a strong possibility of an increase in rainfall in the eastern parts and a decrease in rainfall in the western parts. Bigger floods and longer droughts should occur more frequently as well as severe sea onslaught activities along the eastern and south-eastern coastal areas. The net impact of the predictions on the community is negative. There is though other scientists who indicate that no concrete proof of climate change in South Africa exists; including changes with regard to river floods and droughts. According to more beneficial than detrimental. Despite the differences in opinion about the relative contribution of natural and human activities to the present global warming, changes in hydrological and characteristics of floods in several parts of South Africa in the immediate past, necessitate modifications to available models and approaches to flood damage management and control. Flood conditions need to be managed with applicable models. Modifications are furthermore essential as a result of meaningful demographic, social, physical and economic changes in the working and living environments of people and communities.


2020 ◽  
Vol 7 (7) ◽  
pp. 106-114
Author(s):  
J. Marvin Herndon

Government leaders and educators ought to be able to rely on scientists to tell the truth about climate change, but science has been tainted by politics. Real science, unlike politics, is all about telling the truth, truth that is securely anchored to the properties of matter and radiation. The current, high-profile, politically-driven, climate-change debate centers on two disparate ideas, namely, either global warming is caused by carbon dioxide or is not occurring at all. Neither is correct. Evidence from World War II indicates that particulate pollution, not carbon dioxide, is the cause of global warming. The difference between daily high and nightly low temperature data, tracked over time over a large geographic area, provide evidence that global warming is in fact occurring, which is independent of carbon dioxide. Particles in the lower atmosphere (troposphere) are heated by solar radiation and by radiant heat from the Earth, and transfer that heat to atmospheric gases by molecular collisions. The resultant heating increases atmospheric temperature, and reduces the temperature difference relative to air near the surface, which reduces atmospheric convection, and concomitantly reduces convective heat transport from the surface. This is the mechanism whereby particulate pollution causes global warming.


2020 ◽  
Vol 169 ◽  
pp. 02015
Author(s):  
Silvia Llerena ◽  
Priscila Arias ◽  
Jhonn Cueva ◽  
Georgina Almeida ◽  
Cristian Salazar

Anthropogenic impacts, such as deforestation, soil erosion, and carbon dioxide emissions, have a negative influence over global warming due to the increase of CO2 levels in the atmosphere. The sustainable forest management is a way to mitigate climate change owing to the carbon storage capacity of forests. This study highlights the priority of forest management according to the integrated assessment of carbon storage under anthropogenic impacts in the administrative units of Ecuador. In the obtained map, the provinces Guayas, Esmeraldas, and Manabí showed the highest values of 25, 22.85 and 19.9, respectively, followed by two Amazon provinces, Morona Santiago and Sucumbíos. Therefore, we concluded that deforestation, soil erosion, and carbon dioxide emissions were more pronounced on the coast mainly due to agriculture and livestock activities and the forests in these provinces must have priority management. This analysis is useful for planning environmental practices in order to increase carbon storage as a strategy of mitigation for global warming.


Sign in / Sign up

Export Citation Format

Share Document