scholarly journals Overlapping den tree selection by three declining arboreal mammal species in an Australian tropical savanna

2020 ◽  
Vol 101 (4) ◽  
pp. 1165-1176
Author(s):  
Cara E Penton ◽  
Leigh-Ann Woolley ◽  
Ian J Radford ◽  
Brett P Murphy

Abstract Tree cavities are important denning sites for many arboreal mammals. Knowledge of cavity requirements of individual species, as well as potential den overlap among species, is integral to their conservation. In Australia’s tropical savannas, development of tree cavities is enhanced by high termite activity, and, conversely, reduced by frequent fires. However, it is poorly understood how the availability of tree cavities in the tropical savannas impacts tree cavity use and selection by cavity-dependent fauna. There has been a severe decline among arboreal mammal species in northern Australia over recent decades. Investigation of their cavity requirements may illuminate why these species have declined drastically in some areas but are persisting in others. Here we examined this issue in three species of arboreal mammals (Trichosurus vulpecula, Mesembriomys gouldii, Conilurus penicillatus) on Melville Island, northern Australia. We radiotracked individuals to their den sites to evaluate whether the species differ in their den tree and tree-cavity selection. The strongest influence on den tree selection was the presence of large cavities (> 10 cm entrance diameter), with all three species using larger cavities most frequently. Conilurus penicillatus, the smallest species, differed the most from the other species: it frequently was found in smaller, dead trees and its den sites were closer to the ground, including in hollow logs. The two larger species had broader den tree use, using larger live trees and dens higher up in the canopy. Dens of C. penicillatus are likely to be more susceptible to predation and destruction by high-intensity savanna fires. This may have contributed to this species’ rapid decline, both on Melville Island and on the mainland. However, the apparent preference for larger tree cavities by all three arboreal species is concerning due to the limited availability of large trees across Australian savannas, which are subject to frequent, high-intensity fires.

2008 ◽  
Vol 35 (1) ◽  
pp. 33 ◽  
Author(s):  
Sarah Legge ◽  
Stephen Murphy ◽  
Joanne Heathcote ◽  
Emma Flaxman ◽  
John Augusteyn ◽  
...  

We report the effects of an extensive (>7000 km2), high-intensity late-dry-season fire in the central Kimberley, Western Australia, on the species richness and abundance of mammals, reptiles and birds. Five weeks after the fire we surveyed 12 sites (six burnt, six unburnt); each pair of sites was closely matched for soil type and vegetation. The species richness and abundance of mammals and reptiles was greater at unburnt sites, especially for mammals (with a 4-fold difference in abundance between burnt and unburnt sites). There was an indication that reptiles immigrated into unburnt patches, but mammals did not. There were also species-specific responses to the fire: Rattus tunneyi and Pseudomys nanus were much more abundant in unburnt sites, whereas Pseudomys delicatulus was caught in equal numbers at burnt and unburnt sites. Diurnal reptiles were more abundant at unburnt sites, but nocturnal reptiles were equally common at burnt and unburnt sites. Avian species richness and overall abundance was similar between burnt and unburnt patches, although a few species showed preferences for one state or the other. The overall high trapping success for mammals (18% across all sites; 28% in unburnt patches) contrasts with the well documented mammal collapse in parts of northern Australia and seems paradoxical given that our study area has experienced the same increase in fire frequency and extent that is often blamed for species collapse. However, our study area has fewer pressures from other sources, including grazing by large herbivores, suggesting that the effects of these pressures, and their interaction with fire, may have been underestimated in previous studies.


1997 ◽  
Vol 77 (04) ◽  
pp. 685-689 ◽  
Author(s):  
Paul A Kyrle ◽  
Johannes Brockmeier ◽  
Ansgar Weltermann ◽  
Sabine Eichinger ◽  
Wolfgang Speiser ◽  
...  

SummaryCoumarin-induced skin necrosis is believed to be due to a transient hypercoagulable state resulting from a more rapid decline of the protein C activity relative to that of coagulation factors (F) II, IX and X during initiation of oral anticoagulant therapy. We studied hemostatic system activation during early oral anticoagulant treatment with a technique that investigates coagulation activation in the microcirculation.We determined in 10 healthy volunteers the concentrations of prothrombin fragment F1+2 (f1.2) and thrombin-antithrombin complex (TAT) in blood emerging from an injury of the microvasculature (bleeding time incision) before and after initiation of both high-inten- sity and low-intensity coumarin therapy. In addition, f1.2, TAT, activated F VII (F Vila) and the activities of FII, F VII, F X and protein C were measured in venous blood.A rapid decline of F VII and protein C was observed in venous blood with activities at 24 h of 7 ± 1% and 43 ± 2%, respectively, during the high-intensity regimen. A 20 to 30% reduction of f1.2 and TAT was seen in venous blood at 72 h with no major difference between the high- and the low-intensity regimen. F Vila levels were substantially affected by anticoagulation with a >90% reduction at 48 h during the high-intensity regimen. Following high-intensity coumarin, a >50% decrease in the fl.2 and TAT levels was found in shed blood at 48 h suggesting substantial inhibition of thrombin generation during early oral anticoagulation. An increase in the f1.2 and TAT levels was seen neither in shed blood nor in venous blood.Our data do not support the concept of a transient imbalance between generation and inhibition of thrombin as the underlying pathomechanism of coumarin-induced skin nekrosis.


2003 ◽  
Vol 12 (4) ◽  
pp. 349 ◽  
Author(s):  
Cameron Yates ◽  
Jeremy Russell-Smith

The fire-prone savannas of northern Australia comprise a matrix of mostly fire-resilient vegetation types, with embedded fire-sensitive species and communities particularly in rugged sandstone habitats. This paper addresses the assessment of fire-sensitivity at the landscape scale, drawing on detailed fire history and vegetation data assembled for one large property of 9100�km2, Bradshaw Station in the Top End of the Northern Territory, Australia. We describe (1) the contemporary fire regime for Bradshaw Station for a 10 year period; (2) the distribution and status of 'fire sensitive' vegetation; and (3) an assessment of fire-sensitivity at the landscape scale. Fire-sensitive species (FSS) were defined as obligate seeder species with minimum maturation periods of at least 3 years. The recent fire history for Bradshaw Station was derived from the interpretation of fine resolution Landsat MSS and Landsat TM imagery, supplemented with mapping from coarse resolution NOAA-AVHRR imagery where cloud had obstructed the use of Landsat images late in the fire season (typically October–November). Validation assessments of fire mapping accuracy were conducted in 1998 and 1999. On average 40% of Bradshaw burnt annually with about half of this, 22%, occurring after August (Late Dry Season LDS), and 65% of the property burnt 4 or more times, over the 10 year period; 89% of Bradshaw Station had a minimum fire return interval of less than 3 years in the study period. The derived fire seasonality, frequency and return interval data were assessed with respect to landscape units (landsystems). The largest landsystem, Pinkerton (51%, mostly sandstone) was burnt 41% on average, with about 70% burnt four times or more, over the 10 year period. Assessment of the fire-sensitivity of individual species was undertaken with reference to data assembled for 345 vegetation plots, herbarium records, and an aerial survey of the distribution of the long-lived obligate-seeder tree species Callitris intratropica. A unique list of 1310 plant species was attributed with regenerative characteristics (i.e. habit, perenniality, resprouting capability, time to seed maturation). The great majority of FSS species were restricted to rugged sandstone landforms. The approach has wider application for assessing landscape fire-sensitivity and associated landscape health in savanna landscapes in northern Australia, and elsewhere.


2018 ◽  
Vol 45 (6) ◽  
pp. 518 ◽  
Author(s):  
Jaime Heiniger ◽  
Skye F. Cameron ◽  
Graeme Gillespie

Context Feral cats are a significant threat to native wildlife and broad-scale control is required to reduce their impacts. Two toxic baits developed for feral cats, Curiosity® and Hisstory®, have been designed to reduce the risk of baiting to certain non-target species. These baits involve encapsulating the toxin within a hard-shelled delivery vehicle (HSDV) and placing it within a meat attractant. Native animals that chew their food more thoroughly are predicted to avoid poisoning by eating around the HSDV. This prediction has not been tested on wild native mammals in the monsoonal wet–dry tropics of the Northern Territory. Aim The aim of this research was to determine whether northern quolls (Dasyurus hallucatus) and northern brown bandicoots (Isoodon macrourus) would take feral cat baits and ingest the HSDV under natural conditions on Groote Eylandt. Methods We hand-deployed 120 non-toxic baits with a HSDV that contained a biomarker, Rhodamine B, which stains animal whiskers when ingested. The species responsible for bait removal was determined with camera traps, and HSDV ingestion was measured by evaluating Rhodamine B in whiskers removed from animals trapped after baiting. Key results During field trials, 95% of baits were removed within 5 days. Using camera-trap images, we identified the species responsible for taking baits on 65 occasions. All 65 confirmed takes were by native species, with northern quolls taking 42 baits and northern brown bandicoots taking 17. No quolls and only one bandicoot ingested the HSDV. Conclusion The use of the HSDV reduces the potential for quolls and bandicoots to ingest a toxin when they consume feral cat baits. However, high bait uptake by non-target species may reduce the efficacy of cat baiting in some areas. Implications The present study highlighted that in the monsoonal wet–dry tropics, encapsulated baits are likely to minimise poisoning risk to certain native species that would otherwise eat meat baits. However, further research may be required to evaluate risks to other non-target species. Given the threat to biodiversity from feral cats, we see it as critical to continue testing Hisstory® and Curiosity® in live-baiting trials in northern Australia.


2009 ◽  
Vol 2009 ◽  
pp. 101-101
Author(s):  
S Muir ◽  
M Bai ◽  
Z Loh ◽  
J Hill ◽  
D Chen ◽  
...  

Associations between animal behaviour and emissions of methane (CH4) and ammonia (NH3) have been noted in studies of grazing cattle (Lockyer, 1997) and feedlot confined cattle (Harper et al., 1999, Flesch et al., 2007). Methane emissions have been predicted as being greatest during bouts of rumination (Harper et al., 1999) whereas the emissions of the indirect greenhouse gas ammonia tends to be low early in the morning but increasing rapidly in the early afternoon after which a rapid decline until sunset (Flesch et al., 2007). With the exception of Harper et al., (1999) there are few complete data sets that examine the interaction between animal behaviour and greenhouse gas emissions from intensive animal production systems. The current study aimed to investigate the relationship between animal behaviour and emissions of CH4 and NH3 in a beef feedlot system in northern Australia.


Fire Ecology ◽  
2015 ◽  
Vol 11 (1) ◽  
pp. 10-31 ◽  
Author(s):  
Sofia L. J. Oliveira ◽  
Manuel L. Campagnolo ◽  
Owen F. Price ◽  
Andrew C. Edwards ◽  
Jeremy Russell-Smith ◽  
...  

Ecosystems ◽  
2011 ◽  
Vol 14 (3) ◽  
pp. 503-518 ◽  
Author(s):  
Anna E. Richards ◽  
Garry D. Cook ◽  
Brian T. Lynch

2014 ◽  
Vol 105 (2) ◽  
pp. 141-151 ◽  
Author(s):  
B.D. Hoffmann

AbstractThe lack of biological knowledge of many invasive species remains as one of the greatest impediments to their management. Here I detail targeted research into the biology of the yellow crazy ant Anoplolepis gracilipes within northern Australia and detail how such knowledge can be used to improve the management outcomes for this species. I quantified nest location and density in three habitats, worker activity over 24 h, infestation expansion rate, seasonal variation of worker abundance and the timing of production of sexuals. Nests were predominantly (up to 68%) located at the bases of large trees, indicating that search efforts should focus around tree bases. Nest density was one nest per 22, 7.1 and 6.3 m2 in the three habitats, respectively. These data form the baselines for quantifying treatment efficacy and set sampling densities for post-treatment assessments. Most (60%) nests were underground, predominantly (89%) occurring in an open area rather than underneath a rock or log. Some seasonality was evident for nests within leaf litter, with most (83%) occurring during the ‘wet season’ (October–March). Of the underground nests, most were shallow, with 44% being less than 10 cm deep, and 67% being less than 20 cm deep. Such nest location and density information serves many management purposes, for improving detection, mapping and post-treatment assessments, and also provided strong evidence that carbohydrate supply was a major driver of A. gracilipes populations. Just over half of the nests (56%) contained queens. Of the 62 underground nests containing queens, most queens (80%) were located at the deepest chamber. When queens were present, most often (38%) only one queen was present, the most being 16. Queen number per nest was the lowest in July and August just prior to the emergence of virgin queens in September, with queen numbers then remaining steadily high until April. Nothing is known for any ant species about how the queen number per nest/colony affects treatment efficacy, but further research would no doubt yield important breakthroughs for treating ants. Activity occurred predominantly nocturnally, ceasing during mid-day. These activity data determined the critical threshold above which work must be conducted to be considered reliable, and also suggests that treatments are best applied in the afternoon. Total brood production peaked in February and was the lowest around August and September. These abundance data form the baselines for quantifying treatment efficacy, and may have implications for treatment efficacy. Males were found every month, predominantly between August and November. Queen pupae were found in September. The reproductive timing of sexuals determines the treatment schedule. Targeted, site-specific research such as that described here should be an integral part of any eradication program for invasive species to design knowledge-based treatment protocols and determine assessment benchmarks.


2013 ◽  
Vol 40 (5) ◽  
pp. 393 ◽  
Author(s):  
P. L. Dostine ◽  
S. J. Reynolds ◽  
A. D. Griffiths ◽  
G. R. Gillespie

Context Failure to acknowledge potential bias from imperfect detection of cryptic organisms such as frogs may compromise survey and monitoring programmes targeting these species. Aims The aims of the present study were to identify proximate factors influencing detection probabilities of a range of frog species in monsoonal northern Australia, and to estimate the number of repeat censuses required at a site to have confidence that non-detected species are absent. Methods Data on detection or non-detection of frog species based on calling individuals were recorded during 10 wet-season censuses of 29 survey sites in the Darwin region. Factors influencing detection probabilities were identified using occupancy models; model selection was based on the Akaike information criterion. Sampling effort for individual species was calculated using model predictions at different stages of the wet season. Key results The covariate water temperature featured in the best-supported models for 7 of the 14 frog species. Six of these species were more likely to be detected when water temperatures were below 30°C. Detection probabilities were also correlated with the number of days since the commencement of the wet season, time since last significant rainfall, air temperature and time after sunset. Required sampling effort for individual species varied throughout the wet season. For example, a minimum of two repeat censuses was required for detection of Litoria caerulea in the early wet season, but this number increased to 13 in the middle stage of the wet season. Conclusions Variability in environmental conditions throughout the wet season leads to variability in detection probabilities of frog species in northern Australia. Lower water temperatures, mediated by rainfall immediately before or during surveys, enhances detectability of a range of species. For most species, three repeat surveys under conditions resulting in a high detection probability are sufficient to determine presence at a site. Implications Survey and monitoring programmes for frogs in tropical northern Australia will benefit from the results of the present study by allowing targeting of conditions of high detection probability for individual species, and by incorporating sufficient repeat censuses to provide accurate assessment of the status of individual species at a site.


1999 ◽  
Vol 47 (1) ◽  
pp. 87 ◽  
Author(s):  
J. C. Z. Woinarski ◽  
C. Palmer ◽  
A. Fisher ◽  
K. Brennan ◽  
R. Southgate ◽  
...  

Eighteen non-marine mammal species (including seven species of bats) were recorded from a total of 49 islands in the Wessel and English Company island chains off north-eastern Arnhem Land, Northern Territory. Most individual species were restricted to, or had higher incidence on, larger islands, and species richness as a whole increased as island size increased. The most notable exception was the semi-aquatic Hydromys chrysogaster, which occurred relatively equitably across island sizes; this species, two bat species and the macropod Petrogale brachyotis were recorded from islands smaller than 10 ha. However, the variation between islands in the number of native terrestrial mammal species was not best predicted by island size, but rather by a combination of sampling effort and altitude (which explained 64% of the deviance in species richness), or altitude and distance to larger land mass (explaining 63% of deviance). Richness–area patterns for individual islands in these chains were reasonably consistent with those of other islands sampled in northern Australia. However, the fauna of the Wessel and English Company groups as a whole was less rich than that of the Pellew and Kimberley islands, and individual islands appeared to have lower species richness than comparable mainland areas. Species that were notably absent or that were recorded from relatively few islands include large macropods, Tachyglossus aculeatus, Antechinus bellus, Phascogale tapoatafa, Sminthopsis spp., Mesembriomys gouldii, Rattus colletti, Leggadina lakedownensis and Pseudomys calabyi. Some of these species may be absent through lack of suitable habitat; others have presumably disappeared since isolation, possibly due to Aboriginal hunting. Richness at the quadrat (50 × 50 m) scale was generally very low. Habitat relationships are described for the 7 species recorded from more than 5 quadrats. At a quadrat-scale, the richness of native mammals was greater on islands larger than 1000 ha than on islands smaller than 1000 ha. Quadrat-scale species richness varied significantly among the islands sampled by the most quadrats (even when the comparison was restricted to either of the two most extensive vegetation types), but this variation was not closely related to either area or altitude. The two most frequently recorded species, the rodents Melomys burtoni and Zyzomys argurus, showed distinct habitat segregation on islands where both were present, but tended to expand their habitat range on islands where only one of the species occurred. The most notable conservation feature of the mammal fauna of the Wessel and English Company Islands is the occurrence of the golden bandicoot, Isoodon auratus, a vulnerable species apparently now extinct on the Northern Territory mainland. Four feral animal species (Rattus rattus, Canis familiaris, Bubalus bubalis and Capra hircus) were recorded from a total of 6 islands.


Sign in / Sign up

Export Citation Format

Share Document