Hydrogen sulfide: a multi-tasking signal molecule in the regulation of oxidative stress responses

2020 ◽  
Vol 71 (10) ◽  
pp. 2862-2869 ◽  
Author(s):  
Tao Chen ◽  
Mimi Tian ◽  
Yi Han

Abstract Accumulating evidence suggests that hydrogen sulfide (H2S) is an important signaling molecule in plant environmental interactions. The consensus view amongst plant scientists is that environmental stress leads to enhanced production and accumulation of reactive oxygen species (ROS). H2S interacts with the ROS-mediated oxidative stress response network at multiple levels, including the regulation of ROS-processing systems by transcriptional or post-translational modifications. H2S–ROS crosstalk also involves other interacting factors, including nitric oxide, and can affect key cellular processes like autophagy. While H2S often functions to prevent ROS accumulation, it can also act synergistically with ROS signals in processes such as stomatal closure. In this review, we summarize the mechanisms of H2S action and the multifaceted roles of this molecule in plant stress responses. Emphasis is placed on the interactions between H2S, ROS, and the redox signaling network that is crucial for plant defense against environmental threats.

Author(s):  
Jing Zhang ◽  
Mingjian Zhou ◽  
Heng Zhou ◽  
Didi Zhao ◽  
Cecilia Gotor ◽  
...  

Author(s):  
Poonam Panchal ◽  
Anthony J Miller ◽  
Jitender Giri

Abstract Organic acids (OAs) are central to cellular metabolism. Many plant stress responses involve exudation of OAs at the root-soil interface that can improve soil mineral acquisition and toxic metal tolerance. Because of their simple structure, the Low Molecular Weight Organic Acids (LMWOAs) are widely studied. We discuss the conventional roles of OAs, along with some newly emerging roles in plant stress tolerance. OAs are more versatile in their role in plant stress tolerance and are efficient chelating agents when compared with other acids, such as amino acids. Root OA exudation is important in soil carbon sequestration. These functions are key processes combating climate change and helping with more sustainable food production. We briefly review the mechanisms behind enhanced biosynthesis, secretion and regulation of these activities under different stresses. Also, an outline of the transgenic approaches targeted towards the enhanced production and secretion of OAs is provided. A re-occurring theme of OAs in plant biology is their roles as either ‘acids’ modifying pH or ‘chelators’ binding metals or as ‘carbon sources’ for microbes. We argue that these multiple functions are key factors for understanding these molecules important roles in plant stress biology. Finally, we contemplate how the functions of OAs in plant stress responses can be made use of and what the important unanswered questions are.


HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 439f-439
Author(s):  
K. Shackel ◽  
S. Southwick ◽  
B. Lampinen

To be useful for indicating plant water needs, any measure of plant stress should be closely related to some of the known short and medium term plant stress responses, such as stomatal closure and reduced rates of expansive growth. Methods for the measurement of plant water potential (Ψ) are available, but conflicting results have led to disagreement as to whether any of these give an appropriate biological index of plant water stress. Some pressure chamber results may be attributed to an artifact of water loss following excision. Leaf and stem Ψ however, in addition to being numerically different, may not be equivalent indices of plant stress, and midday stem Ψ has proven to be a useful index of stress in a number of fruit trees. Day to day fluctuations in midday stem Ψ under well irrigated conditions is well correlated to midday Vapor Pressure Deficit, and hence can be used to predict a non-stressed baseline. A 50% decline in water use at both the leaf and canopy level were associated with relatively small reductions (0.5 to 0.6 MPa) in midday stem Ψ from this baseline in prune. In cherry, midday stem Ψ was correlated to both leaf stomatal conductance and rates of shoot growth, with shoot growth essentially stopping once midday stem Ψ dropped to between -1.5 to -1.7 MPa. In pear, increased fruit size, decreased fruit soluble solids and increased green color were all associated with increases in midday stem Ψ.


2019 ◽  
Vol 141 ◽  
pp. 353-369 ◽  
Author(s):  
Muhammad Ansar Farooq ◽  
Adnan Khan Niazi ◽  
Javaid Akhtar ◽  
Saifullah ◽  
Muhammad Farooq ◽  
...  

2017 ◽  
Vol 9 (15) ◽  
pp. 2357-2360 ◽  
Author(s):  
Anikó Mátai ◽  
Éva Hideg

Hydrogen peroxide (H2O2) is a central molecule in plant stress responses as a potential oxidizing agent or a signal molecule, depending on its localization and cellular concentrations. The work compares the versatility of three simple and rapid, potentially high through-put photometric assays to detect this reactive oxygen species in leaf extracts.


Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 697
Author(s):  
Juan Mao ◽  
Wenxin Li ◽  
Jing Liu ◽  
Jianming Li

The plant glycogen synthase kinase 3 (GSK3)-like kinases are highly conserved protein serine/threonine kinases that are grouped into four subfamilies. Similar to their mammalian homologs, these kinases are constitutively active under normal growth conditions but become inactivated in response to diverse developmental and environmental signals. Since their initial discoveries in the early 1990s, many biochemical and genetic studies were performed to investigate their physiological functions in various plant species. These studies have demonstrated that the plant GSK3-like kinases are multifunctional kinases involved not only in a wide variety of plant growth and developmental processes but also in diverse plant stress responses. Here we summarize our current understanding of the versatile physiological functions of the plant GSK3-like kinases along with their confirmed and potential substrates.


Rice ◽  
2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Xiang Zhang ◽  
Yan Long ◽  
Jingjing Huang ◽  
Jixing Xia

Abstract Background Salt stress threatens crop yields all over the world. Many NAC transcription factors have been reported to be involved in different abiotic stress responses, but it remains unclear how loss of these transcription factors alters the transcriptomes of plants. Previous reports have demonstrated that overexpression of OsNAC45 enhances salt and drought tolerance in rice, and that OsNAC45 may regulate the expression of two specific genes, OsPM1 and OsLEA3–1. Results Here, we found that ABA repressed, and NaCl promoted, the expression of OsNAC45 in roots. Immunostaining showed that OsNAC45 was localized in all root cells and was mainly expressed in the stele. Loss of OsNAC45 decreased the sensitivity of rice plants to ABA and over-expressing this gene had the opposite effect, which demonstrated that OsNAC45 played an important role during ABA signal responses. Knockout of OsNAC45 also resulted in more ROS accumulation in roots and increased sensitivity of rice to salt stress. Transcriptome sequencing assay found that thousands of genes were differently expressed in OsNAC45-knockout plants. Most of the down-regulated genes participated in plant stress responses. Quantitative real time RT-PCR suggested that seven genes may be regulated by OsNAC45 including OsCYP89G1, OsDREB1F, OsEREBP2, OsERF104, OsPM1, OsSAMDC2, and OsSIK1. Conclusions These results indicate that OsNAC45 plays vital roles in ABA signal responses and salt tolerance in rice. Further characterization of this gene may help us understand ABA signal pathway and breed rice plants that are more tolerant to salt stress.


Life ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 304
Author(s):  
Tatyana Savchenko ◽  
Konstantin Tikhonov

Oxidative stress is an integral component of various stress conditions in plants, and this fact largely determines the substantial overlap in physiological and molecular responses to biotic and abiotic environmental challenges. In this review, we discuss the alterations in central metabolism occurring in plants experiencing oxidative stress. To focus on the changes in metabolite profile associated with oxidative stress per se, we primarily analyzed the information generated in the studies based on the exogenous application of agents, inducing oxidative stress, and the analysis of mutants displaying altered oxidative stress response. Despite of the significant variation in oxidative stress responses among different plant species and tissues, the dynamic and transient character of stress-induced changes in metabolites, and the strong dependence of metabolic responses on the intensity of stress, specific characteristic changes in sugars, sugar derivatives, tricarboxylic acid cycle metabolites, and amino acids, associated with adaptation to oxidative stress have been detected. The presented analysis of the available data demonstrates the oxidative stress-induced redistribution of metabolic fluxes targeted at the enhancement of plant stress tolerance through the prevention of ROS accumulation, maintenance of the biosynthesis of indispensable metabolites, and production of protective compounds. This analysis provides a theoretical basis for the selection/generation of plants with improved tolerance to oxidative stress and the development of metabolic markers applicable in research and routine agricultural practice.


2001 ◽  
Vol 13 (6) ◽  
pp. 451-456 ◽  
Author(s):  
Takeshi Kinpara ◽  
Yuji Murakami ◽  
Kenji Yokoyama ◽  
Eiichi Tamiya

Sign in / Sign up

Export Citation Format

Share Document