scholarly journals Arabidopsis ADF5 promotes stomatal closure by regulating actin cytoskeleton remodeling in response to ABA and drought stress

2018 ◽  
Vol 70 (2) ◽  
pp. 435-446 ◽  
Author(s):  
Dong Qian ◽  
Zhe Zhang ◽  
Juanxia He ◽  
Pan Zhang ◽  
Xiaobin Ou ◽  
...  
2020 ◽  
Vol 71 (19) ◽  
pp. 6092-6106 ◽  
Author(s):  
Ping-Xia Zhao ◽  
Zi-Qing Miao ◽  
Jing Zhang ◽  
Si-Yan Chen ◽  
Qian-Qian Liu ◽  
...  

Abstract Drought is one of the most important environmental factors limiting plant growth and productivity. The molecular mechanisms underlying plant drought resistance are complex and not yet fully understood. Here, we show that the Arabidopsis MADS-box transcription factor AGL16 acts as a negative regulator in drought resistance by regulating stomatal density and movement. Loss-of-AGL16 mutants were more resistant to drought stress and had higher relative water content, which was attributed to lower leaf stomatal density and more sensitive stomatal closure due to higher leaf ABA levels compared with the wild type. AGL16-overexpressing lines displayed the opposite phenotypes. AGL16 is preferentially expressed in guard cells and down-regulated in response to drought stress. The expression of CYP707A3 and AAO3 in ABA metabolism and SDD1 in stomatal development was altered in agl16 and overexpression lines, making them potential targets of AGL16. Using chromatin immunoprecipitation, transient transactivation, yeast one-hybrid, and electrophoretic mobility shift assays, we demonstrated that AGL16 was able to bind the CArG motifs in the promoters of the CYP707A3, AAO3, and SDD1 and regulate their transcription, leading to altered leaf stomatal density and ABA levels. Taking our findings together, AGL16 acts as a negative regulator of drought resistance by modulating leaf stomatal density and ABA accumulation.


Glia ◽  
2008 ◽  
Vol 56 (16) ◽  
pp. 1755-1766 ◽  
Author(s):  
Grazia Paola Nicchia ◽  
Andrea Rossi ◽  
Maria Grazia Mola ◽  
Giuseppe Procino ◽  
Antonio Frigeri ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2374
Author(s):  
Marium Khatun ◽  
Sumi Sarkar ◽  
Farzana Mustafa Era ◽  
A. K. M. Mominul Islam ◽  
Md. Parvez Anwar ◽  
...  

Grain legumes are important sources of proteins, essential micronutrients and vitamins and for human nutrition. Climate change, including drought, is a severe threat to grain legume production throughout the world. In this review, the morpho-physiological, physio-biochemical and molecular levels of drought stress in legumes are described. Moreover, different tolerance mechanisms, such as the morphological, physio-biochemical and molecular mechanisms of legumes, are also reviewed. Moreover, various management approaches for mitigating the drought stress effects in grain legumes are assessed. Reduced leaf area, shoot and root growth, chlorophyll content, stomatal conductance, CO2 influx, nutrient uptake and translocation, and water-use efficiency (WUE) ultimately affect legume yields. The yield loss of grain legumes varies from species to species, even variety to variety within a species, depending upon the severity of drought stress and several other factors, such as phenology, soil textures and agro-climatic conditions. Closure of stomata leads to an increase in leaf temperature by reducing the transpiration rate, and, so, the legume plant faces another stress under drought stress. The biosynthesis of reactive oxygen species (ROS) is the most detrimental effect of drought stress. Legumes can adapt to the drought stress by changing their morphology, physiology and molecular mechanism. Improved root system architecture (RSA), reduced number and size of leaves, stress-induced phytohormone, stomatal closure, antioxidant defense system, solute accumulation (e.g., proline) and altered gene expression play a crucial role in drought tolerance. Several agronomic, breeding both conventional and molecular, biotechnological approaches are used as management practices for developing a drought-tolerant legume without affecting crop yield. Exogenous application of plant-growth regulators (PGRs), osmoprotectants and inoculation by Rhizobacteria and arbuscular mycorrhizal fungi promotes drought tolerance in legumes. Genome-wide association studies (GWASs), genomic selection (GS), marker-assisted selection (MAS), OMICS-based technology and CRISPR/Cas9 make the breeding work easy and save time in the developmental cycle to get resistant legumes. Several drought-resistant grain legumes, such as the chickpea, faba bean, common bean and pigeon pea, were developed by different institutions. Drought-tolerant transgenic legumes, for example, chickpeas, are developed by introgressing desired genes through breeding and biotechnological approaches. Several quantitative trait loci (QTLs), candidate genes occupying drought-tolerant traits, are identified from a variety of grain legumes, but not all are under proper implementation. Hence, more research should be conducted to improve the drought-tolerant traits of grain legumes for avoiding losses during drought.


2016 ◽  
Vol 5 (09) ◽  
pp. 1409 ◽  
Author(s):  
Shamsun Nahar ◽  
Jyotirmay Kalita ◽  
Lingaraj Sahoo ◽  
Bhaben Tanti*

Drought is a major abiotic stress that adversely affects the rice growth, mostly in the rainfed ecosystem that ultimately affects the biomass production and yield. Rice needs to adapt a series of physiological mechanisms with complicated regulatory network to fight and cope up with the unfavourable conditions due to drought stress. Morphological and physiological response in rice include inhibition of seed germination, slower growth rate, low root and shoot length, lower chlorophyll content, stomatal closure, lower rate of photosynthesis, yield reduction etc. Stress condition further results in development of response at the molecular level by the generation of reactive oxygen species (ROS) such as O2*-, H2O2, 1O2, OH* etc. which incites oxidative stress in the plants. Oxidative stress is overcome by the inherent capacity of plants to produce antioxidant species which may be enzymatic or non-enzymatic in nature. If however antioxidant defence mechanism cannot overpower the ROS generated, they cause oxidative damage to the plant tissues such as lipid peroxidation, protein oxidation, DNA damage, etc. resulting in cell death. Unlike other stresses, drought affects the physiology and biochemistry of the rice which adversely affects in the morphology and consequently delimits the yield of the plant. Therefore, understanding the morphological, biochemical and molecular mechanisms involved in rice against drought is utmost necessary for rice breeders to improve the rice for drought tolerant/resistance varieties for future green revolution. In this review, an attempt has been made to highlight the complex regulatory network involved in rice against drought with special emphasis on morphological, physiological and molecular mechanisms and to discuss the prospective and challenges for future plant breeders.


2021 ◽  
Author(s):  
Weiwei Gao ◽  
Mingkang Li ◽  
Songguang Yang ◽  
Chunzhi Gao ◽  
Yan Su ◽  
...  

AbstractInduced abscisic acid (ABA) biosynthesis plays an important role in plant tolerance to abiotic stresses, including drought, cold and salinity. However, regulation pathway of the ABA biosynthesis in response to stresses is unclear. Here, we identified a rice miRNA, osa-miR2105 (miR2105), which plays a crucial role in ABA biosynthesis under drought stress. Analysis of expression, transgenic rice and cleavage site showed that OsbZIP86 is a target gene of miR2105. Subcellular localization and luciferase activity assays showed that OsbZIP86 is a nuclear transcription factor. In vivo and in vitro analyses showed that OsbZIP86 directly binds to the promoter of OsNCED3, and interacts with OsSAPK10, resulting in enhanced-expression of OsNCED3. Transgenic rice plants with knock-down of miR2105 or overexpression of OsbZIP86 showed higher ABA content, more tolerance to drought, a lower rate of water loss, more stomatal closure than wild type rice ZH11 under drought stress. These rice plants showed no penalty with respect to agronomic traits under normal conditions. By contrast, transgenic rice plants with miR2105 overexpression, OsbZIP86 downregulation, or OsbZIP86 knockout displayed less tolerance to drought stress and other phenotypes. Collectively, our results show that a regulatory network of ‘miR2105-OsSAPK10/OsbZIP86-OsNCED3’ control ABA biosynthesis in response to drought stress.One-sentence summary‘miR2105-OsbZIP86-OsNCED3’ module plays crucial role in mediating ABA biosynthesis to contribute to drought tolerance with no penalty with respect to agronomic traits under normal conditions.


Sign in / Sign up

Export Citation Format

Share Document