From libraries to wayfinding, waylosing, and symbolism

2021 ◽  
pp. 359-420
Author(s):  
Michael A. Arbib

After demonstrating that a building is a system of systems, we examine the symbolism of certain libraries. A cognitive account of wayfinding uses the Seattle Public Library to analyze getting lost in buildings—which we contrast with waylosing as in exploration. Cognitive maps in the brain represent places and the means to find one’s way between them. Different “worlds” each have their own, modeled as a world graph (WG) with distinctive places represented by nodes, and paths represented by edges. Complementing this, a locometric map represents locomotor effort in getting from one place to another. Single-cell recording from rat hippocampus reveals place cells whose activity correlates with the place in which the animal finds itself. However, “place” here corresponds to location on a locometric map, rather than distinctive places of WG nodes. The taxon affordance model (TAM), models how one navigates without a cognitive map. Several brain regions are involved, but not hippocampus. The world graph model (WGM) makes essential use of the hippocampus in coordination with brain regions processing the relevant WG. Finally, we contrast symbolic form in buildings with the use of explicit signage. Oscar Niemeyer’s Brasilia Cathedral exemplifies how architects may achieve novel symbolic forms.

Author(s):  
Philippe Laroque ◽  
Nathalie Gaussier ◽  
Nicolas Cuperlier ◽  
Mathias Quoy ◽  
Philippe Gaussier

AbstractStarting from neurobiological hypotheses on the existence of place cells (PC) in the brain, the aim of this article is to show how little assumptions at both individual and social levels can lead to the emergence of non-trivial global behaviors in a multi-agent system (MAS). In particular, we show that adding a simple, hebbian learning mechanism on a cognitive map allows autonomous, situated agents to adapt themselves in a dynamically changing environment, and that even using simple agent-following strategies (driven either by similarities in the agent movement, or by individual marks - “signatures” - in agents) can dramatically improve the global performance of the MAS, in terms of survival rate of the agents. Moreover, we show that analogies can be made between such a MAS and the emergence of certain social behaviors.


2021 ◽  
Author(s):  
David J-N. Maisson ◽  
Seng Bum Michael Yoo ◽  
Maya Z Wang ◽  
Tyler V Cash-Padgett ◽  
Jan Zimmermann ◽  
...  

Common currency theories in neuroeconomics hold that neurons in specific brain regions specifically encode subjective values of offers and not stimulus-specific information. The rationale behind these theories is that abstract value encoding lets the decision maker compare qualitatively different options. Alternatively, expectancy-based theories hold that the brain preferentially tracks the relationship between options and their outcomes, and thus does not abstract away details of offers. To adjudicate between these theories, we examined responses of neurons in six reward regions to risky and safe offers while macaques performed a gambling task. In all regions, responses to safe options are unrelated to responses evoked by equally preferred risky options. Nor does any region appear to contain a specialized subset of value-selective neurons. Finally, in all regions, responses to risky and safe options occupy distinct response subspaces, indicating that the organizational framework for encoding risky and safe offers is different. Together, these results argue against the idea that putative reward regions carry abstract value signals, and instead support the idea that these regions carry information that links specific options to their outcomes in support of a broader cognitive map.


1996 ◽  
Vol 199 (1) ◽  
pp. 163-164
Author(s):  
DF Sherry

Few ideas have had a greater impact on the study of navigation at the middle scale than the theory of the cognitive map. As papers in this section show, current views of the cognitive map range from complete rejection of the idea (Bennett, 1996) to new proposals for the behavioural and neural bases of the cognitive map (Gallistel and Cramer, 1996; McNaughton et al. 1996). The papers in this section also make it clear that path integration has taken centre stage in theorizing about navigation at the middle scale. Path integration is the use of information generated by locomotion to determine the current distance and direction to the origin of the path. Etienne (1980) provided one of the first experimental demonstrations of path integration by a vertebrate, and in this section Etienne et al. (1996) describe recent research with animals and humans on the interaction between path integration and landmark information. Path integration is also the fundamental means of navigation in the model described by Gallistel and Cramer (1996). McNaughton et al. (1996) suggest that the neural basis of path integration is found in the place cells and head direction cells of the hippocampus and associated brain regions.


2021 ◽  
Author(s):  
Ayaka Bota ◽  
Akihiro Goto ◽  
Suzune Tsukamoto ◽  
Alexander Schmidt ◽  
Fred Wolf ◽  
...  

In the brain, spatial information is represented by neurons that fire when an animal is at specific locations, including place cells in hippocampus and grid cells in entorhinal cortex. But how this information is processed in downstream brain regions still remains elusive. Using chronic Ca2+ imaging, we examined the activity of neurons in anterior cingulate cortex (ACC), a brain region implicated in memory consolidation, and found neurons that fire in a manner consistent with the properties of place cells. While the ACC place cells showed stability, location and context specificity similar to the hippocampal counterparts, they also have unique properties. Unlike hippocampal place cells that immediately formed upon exposure to a novel environment, ACC place cells increased over days. Also, ACC place cells tend to have additional place fields whereas typical hippocampal place cells have only one. Hippocampal activity is required for the formation of ACC place cells, but once they are established, hippocampal inactivation did not have any impact on ACC place cell firing. We thus identified features of ACC place cells that carry spatial information in a unique fashion.


2020 ◽  
Vol 21 ◽  
Author(s):  
Sayed Md Mumtaz ◽  
Gautam Bhardwaj ◽  
Shikha Goswami ◽  
Rajiv Kumar Tonk ◽  
Ramesh K. Goyal ◽  
...  

: The Glioblastoma Multiforme (GBM; grade IV astrocytoma) exhort tumor of star-shaped glial cell in the brain. It is a fast-growing tumor that spreads to nearby brain regions specifically to cerebral hemispheres in frontal and temporal lobes. The etiology of GBM is unknown, but major risk factors are genetic disorder like neurofibromatosis and schwanomatosis which develop the tumor in the nervous system. The management of GBM with chemo-radio therapy leads to resistance and current drug regimen like Temozolomide (TMZ) is less efficacious. The reasons behind failure of drugs are due to DNA alkylation in cell cycle by enzyme DNA guanidase and mitochondrial dysfunction. Naturally occurring bio-active compounds from plants known as phytochemicals, serve as vital sources for anti-cancer drugs. Some typical examples include taxol analogs, vinca alkaloids such as vincristine, vinblastine, podophyllotoxin analogs, camptothecin, curcumin, aloe emodin, quercetin, berberine e.t.c. These phytochemicals often act via regulating molecular pathways which are implicated in growth and progression of cancers. However the challenges posed by the presence of BBB/BBTB to restrict passage of these phytochemicals, culminates in their low bioavailability and relative toxicity. In this review we integrated nanotech as novel drug delivery system to deliver phytochemicals from traditional medicine to the specific site within the brain for the management of GBM.


2020 ◽  
Vol 20 (9) ◽  
pp. 800-811 ◽  
Author(s):  
Ferath Kherif ◽  
Sandrine Muller

In the past decades, neuroscientists and clinicians have collected a considerable amount of data and drastically increased our knowledge about the mapping of language in the brain. The emerging picture from the accumulated knowledge is that there are complex and combinatorial relationships between language functions and anatomical brain regions. Understanding the underlying principles of this complex mapping is of paramount importance for the identification of the brain signature of language and Neuro-Clinical signatures that explain language impairments and predict language recovery after stroke. We review recent attempts to addresses this question of language-brain mapping. We introduce the different concepts of mapping (from diffeomorphic one-to-one mapping to many-to-many mapping). We build those different forms of mapping to derive a theoretical framework where the current principles of brain architectures including redundancy, degeneracy, pluri-potentiality and bow-tie network are described.


Author(s):  
Antonina Kouli ◽  
Marta Camacho ◽  
Kieren Allinson ◽  
Caroline H. Williams-Gray

AbstractParkinson’s disease dementia is neuropathologically characterized by aggregates of α-synuclein (Lewy bodies) in limbic and neocortical areas of the brain with additional involvement of Alzheimer’s disease-type pathology. Whilst immune activation is well-described in Parkinson’s disease (PD), how it links to protein aggregation and its role in PD dementia has not been explored. We hypothesized that neuroinflammatory processes are a critical contributor to the pathology of PDD. To address this hypothesis, we examined 7 brain regions at postmortem from 17 PD patients with no dementia (PDND), 11 patients with PD dementia (PDD), and 14 age and sex-matched neurologically healthy controls. Digital quantification after immunohistochemical staining showed a significant increase in the severity of α-synuclein pathology in the hippocampus, entorhinal and occipitotemporal cortex of PDD compared to PDND cases. In contrast, there was no difference in either tau or amyloid-β pathology between the groups in any of the examined regions. Importantly, we found an increase in activated microglia in the amygdala of demented PD brains compared to controls which correlated significantly with the extent of α-synuclein pathology in this region. Significant infiltration of CD4+ T lymphocytes into the brain parenchyma was commonly observed in PDND and PDD cases compared to controls, in both the substantia nigra and the amygdala. Amongst PDND/PDD cases, CD4+ T cell counts in the amygdala correlated with activated microglia, α-synuclein and tau pathology. Upregulation of the pro-inflammatory cytokine interleukin 1β was also evident in the substantia nigra as well as the frontal cortex in PDND/PDD versus controls with a concomitant upregulation in Toll-like receptor 4 (TLR4) in these regions, as well as the amygdala. The evidence presented in this study show an increased immune response in limbic and cortical brain regions, including increased microglial activation, infiltration of T lymphocytes, upregulation of pro-inflammatory cytokines and TLR gene expression, which has not been previously reported in the postmortem PDD brain.


Author(s):  
Sarah F. Beul ◽  
Alexandros Goulas ◽  
Claus C. Hilgetag

AbstractStructural connections between cortical areas form an intricate network with a high degree of specificity. Many aspects of this complex network organization in the adult mammalian cortex are captured by an architectonic type principle, which relates structural connections to the architectonic differentiation of brain regions. In particular, the laminar patterns of projection origins are a prominent feature of structural connections that varies in a graded manner with the relative architectonic differentiation of connected areas in the adult brain. Here we show that the architectonic type principle is already apparent for the laminar origins of cortico-cortical projections in the immature cortex of the macaque monkey. We find that prenatal and neonatal laminar patterns correlate with cortical architectonic differentiation, and that the relation of laminar patterns to architectonic differences between connected areas is not substantially altered by the complete loss of visual input. Moreover, we find that the degree of change in laminar patterns that projections undergo during development varies in proportion to the relative architectonic differentiation of the connected areas. Hence, it appears that initial biases in laminar projection patterns become progressively strengthened by later developmental processes. These findings suggest that early neurogenetic processes during the formation of the brain are sufficient to establish the characteristic laminar projection patterns. This conclusion is in line with previously suggested mechanistic explanations underlying the emergence of the architectonic type principle and provides further constraints for exploring the fundamental factors that shape structural connectivity in the mammalian brain.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Florian Bitsch ◽  
Philipp Berger ◽  
Andreas Fink ◽  
Arne Nagels ◽  
Benjamin Straube ◽  
...  

AbstractThe ability to generate humor gives rise to positive emotions and thus facilitate the successful resolution of adversity. Although there is consensus that inhibitory processes might be related to broaden the way of thinking, the neural underpinnings of these mechanisms are largely unknown. Here, we use functional Magnetic Resonance Imaging, a humorous alternative uses task and a stroop task, to investigate the brain mechanisms underlying the emergence of humorous ideas in 24 subjects. Neuroimaging results indicate that greater cognitive control abilities are associated with increased activation in the amygdala, the hippocampus and the superior and medial frontal gyrus during the generation of humorous ideas. Examining the neural mechanisms more closely shows that the hypoactivation of frontal brain regions is associated with an hyperactivation in the amygdala and vice versa. This antagonistic connectivity is concurrently linked with an increased number of humorous ideas and enhanced amygdala responses during the task. Our data therefore suggests that a neural antagonism previously related to the emergence and regulation of negative affective responses, is linked with the generation of emotionally positive ideas and may represent an important neural pathway supporting mental health.


Sign in / Sign up

Export Citation Format

Share Document