MEG-EEG Primer

Author(s):  
Riitta Hari, MD, PhD ◽  
Aina Puce, PhD

This book provides newcomers and more experienced researchers with the very basics of magnetoencephalography (MEG) and electroencephalography (EEG)—two noninvasive methods that can inform about the neurodynamics of the human brain on a millisecond scale. These two closely related methods are addressed side by side, starting from their physical and physiological bases and then advancing to methods of data acquisition, analysis, visualization, and interpretation. Special attention is paid to careful experimentation, guiding the readers to differentiate brain signals from various biological and non-biological artifacts and to ascertain that the collected data are reliable. The strengths and weaknesses of MEG and EEG are presented relative to each other and to other available brain-imaging methods. Necessary instrumentation and laboratory set-ups, as well as potential pitfalls in data collection and analysis are discussed. Spontaneous brain rhythms and evoked responses to sensory and multisensory stimulation are covered and examined both in healthy individuals and in various brain disorders, such as epilepsy. MEG/EEG signals related to motor, cognitive, and social events are discussed as well. The integration of MEG and EEG information with other methods to assess human brain function is discussed with respect to the current state-of-the art in the field. The book ends with a look to future developments in equipment design, and experimentation, emphasizing the role of accurate temporal information for human brain function.

2017 ◽  
pp. 304-310
Author(s):  
Riitta Hari ◽  
Aina Puce

This chapter summarizes some relative advantages and disadvantages of MEG and EEG, most of which have been previously elaborated. MEG and EEG are the two sides of the same coin and provide complementary information about the human brain’s neurodynamics. The combined use of MEG or EEG together and with other noninvasive methods used to study human brain function is advocated to be important for future research in systems and cognitive/social neuroscience. This chapter also examines combined use and interpretation of MEG/EEG with MRI/fMRI, and performing EEG recordings during non-invasive brain stimulation.


2018 ◽  
Vol 25 (1) ◽  
pp. 86-93 ◽  
Author(s):  
Fabrizio Vecchio ◽  
Francesca Miraglia ◽  
Paolo Maria Rossini

The human brain is a complex container of interconnected networks. Network neuroscience is a recent venture aiming to explore the connection matrix built from the human brain or human “Connectome.” Network-based algorithms provide parameters that define global organization of the brain; when they are applied to electroencephalographic (EEG) signals network, configuration and excitability can be monitored in millisecond time frames, providing remarkable information on their instantaneous efficacy also for a given task’s performance via online evaluation of the underlying instantaneous networks before, during, and after the task. Here we provide an updated summary on the connectome analysis for the prediction of performance via the study of task-related dynamics of brain network organization from EEG signals.


2018 ◽  
Author(s):  
Siemon C. de Lange ◽  
Lianne H. Scholtens ◽  
Leonard H. van den Berg ◽  
Marco P. Boks ◽  
Marco Bozzali ◽  
...  

AbstractMacroscale white matter pathways form the infrastructure for large-scale communication in the human brain, a prerequisite for healthy brain function. Conversely, disruptions in the brain’s connectivity architecture are thought to play an important role in a wide range of psychiatric and neurological brain disorders. Here we show that especially connections important for global communication and network integration are involved in a wide range of brain disorders. We report on a meta-analytic connectome study comprising in total 895 patients and 1,016 controls across twelve neurological and psychiatric disorders. We extracted disorder connectome fingerprints for each of these twelve disorders, which were then combined into a cross-disorder disconnectivity involvement map, representing the involvement of each brain pathway across brain disorders. Our findings show connections central to the brain’s infrastructure are disproportionally involved across a wide range of disorders. Connections critical for global network communication and integration display high disturbance across disorders, suggesting a general cross-disorder involvement and importance of these pathways in normal function. Taken together, our cross-disorder study suggests a convergence of disconnectivity across disorders to a partially shared disconnectivity substrate of central connections.


2015 ◽  
Vol 112 (25) ◽  
pp. 7863-7867 ◽  
Author(s):  
Karin Jensen ◽  
Irving Kirsch ◽  
Sara Odmalm ◽  
Ted J. Kaptchuk ◽  
Martin Ingvar

Pain reduction and enhancement can be produced by means of conditioning procedures, yet the role of awareness during the acquisition stage of classical conditioning is unknown. We used psychophysical measures to establish whether conditioned analgesic and hyperalgesic responses could be acquired by unseen (subliminally presented) stimuli. A 2 × 2 factorial design, including subliminal/supraliminal exposures of conditioning stimuli (CS) during acquisition/extinction, was used. Results showed significant analgesic and hyperalgesic responses (P < 0.001), and responses were independent of CS awareness, as subliminal/supraliminal cues during acquisition/extinction led to comparable outcomes. The effect was significantly larger for hyperalgesic than analgesic responses (P < 0.001). Results demonstrate that conscious awareness of the CS is not required during either acquisition or extinction of conditioned analgesia or hyperalgesia. Our results support the notion that nonconscious stimuli have a pervasive effect on human brain function and behavior and may affect learning of complex cognitive processes such as psychologically mediated analgesic and hyperalgesic responses.


Author(s):  
C. S. Potter ◽  
C. D. Gregory ◽  
H. D. Morris ◽  
Z.-P. Liang ◽  
P. C. Lauterbur

Over the past few years, several laboratories have demonstrated that changes in local neuronal activity associated with human brain function can be detected by magnetic resonance imaging and spectroscopy. Using these methods, the effects of sensory and motor stimulation have been observed and cognitive studies have begun. These new methods promise to make possible even more rapid and extensive studies of brain organization and responses than those now in use, such as positron emission tomography.Human brain studies are enormously complex. Signal changes on the order of a few percent must be detected against the background of the complex 3D anatomy of the human brain. Today, most functional MR experiments are performed using several 2D slice images acquired at each time step or stimulation condition of the experimental protocol. It is generally believed that true 3D experiments must be performed for many cognitive experiments. To provide adequate resolution, this requires that data must be acquired faster and/or more efficiently to support 3D functional analysis.


2008 ◽  
Vol 35 (S 01) ◽  
Author(s):  
C Helmchen ◽  
J Klinkenstein ◽  
T Sander ◽  
J Gliemroth ◽  
B Machner ◽  
...  

Author(s):  
Selma Büyükgöze

Brain Computer Interface consists of hardware and software that convert brain signals into action. It changes the nerves, muscles, and movements they produce with electro-physiological signs. The BCI cannot read the brain and decipher the thought in general. The BCI can only identify and classify specific patterns of activity in ongoing brain signals associated with specific tasks or events. EEG is the most commonly used non-invasive BCI method as it can be obtained easily compared to other methods. In this study; It will be given how EEG signals are obtained from the scalp, with which waves these frequencies are named and in which brain states these waves occur. 10-20 electrode placement plan for EEG to be placed on the scalp will be shown.


Sign in / Sign up

Export Citation Format

Share Document