Infectious disease

Author(s):  
Chantal Simon ◽  
Hazel Everitt ◽  
Françoise van Dorp ◽  
Matt Burkes

Immunization Symptoms, signs, and notification of infectious disease Illness in returning travellers Infections in immunocompromised patients Childhood viral infections Streptococcal and staphylococcal infections Other bacterial infections • Active immunity Induced using inactivated or attenuated live organisms or their products. Acts by inducing cell-mediated immunity and serum antibodies. Generally long-lasting...

Author(s):  
Chantal Simon ◽  
Hazel Everitt ◽  
Françoise van Dorp ◽  
Nazia Hussain ◽  
Emma Nash ◽  
...  

This chapter in the Oxford Handbook of General Practice explores infectious disease in general practice. It covers immunization and symptoms, signs, and notification of infectious disease. It explores sepsis, illness in returning travellers, and immunocompromise. It also examines childhood viral infections, staphylococcal and streptococcal infection, and other bacterial infections.


2021 ◽  
Vol 14 (2) ◽  
pp. 087-097
Author(s):  
Shifa Begum ◽  
Tofa Begum ◽  
Naziza Rahman ◽  
Ruhul A. Khan

Antibiotics are widely used most effective medication since the twentieth century against bacterial infections (Tetanus, Strep Throat, Urinary Tract Infections, etc.) and thus save one’s life. Before 20th-century infectious disease played the main role in the death. Thus, antibiotics opened a revolutionary era in the field of medication. These cannot fight against viral infections. Antibiotics are also known as an antibacterial that kill or slow down bacterial growth and prohibit the bacteria to harm. Resistance comes as a curse with antibiotics that occurs when bacteria change in some way that reduces or eliminates the effectiveness of drugs, chemicals or other agents designed to cure or prevent infections. It is now a significant threat to public health that is affecting humans worldwide outside the environment of the hospital. When a bacterium once become resistant to antibiotic then the bacterial infections cannot be cured with that antibiotic. Thus, the emergence of antibiotic-resistance among the most important bacterial pathogens causing more harm. In this context, the classification of antibiotics, mode of action of antibiotics, and mechanism of resistance and the process of overcoming antibiotic resistance are discussed broadly.


2019 ◽  
pp. 189-211
Author(s):  
Leah Bauer ◽  
Carolyn Chooljian ◽  
Whitney Johnson

Generalized complaints such as fever, chills, malaise, and body aches are common presentations to the emergency department (ED). Some of these are due to viral infections, and some are due to systemic bacterial infections. Clues to the specific infection can be found in the geographic location of the patient or the patient’s exposure to wildlife (e.g., ticks) and animals. The patient’s history and the timing of the illness play an important part in helping to identify the possible source or cause of the infection. This chapter presents questions related to the diagnosis, clinical effects, and most appropriate treatment of a wide range of these systemic infectious disease emergencies.


The occurrence of infectious disease is affected by interaction between microorganisms in three ways. The indigenous flora (commensal microorganisms) of some mucous surfaces provide one of the main protective mechanisms against infection by pathogens (disease-producing microbes). The commensal populations interfere with the establishment of pathogens on mucous membranes by evoking anaerobic conditions, by competing for space and nutrients and by producing inhibitors. How, at the beginning of successful infection, pathogens in relatively small numbers overcome this protective activity of the commensal population is unknown. Although not a general phenomenon, some pathogens exacerbate the effects ofothers. The best examples are the potentiation of bacterial infections by existing viral infections: mucosal adherence and penetration by bacteria are enhanced and phagocytic defences against them weakened. Some microorganisms that are unable to produce significant disease on their own may combine with others to cause serious sickness. The harmful effects of these combinations of microorganisms can be explained by the multifactorial nature of pathogenicity (virulence), i.e. the capacity to produce disease. Although each member of the mixed population cannot alone produce the full complement of factors needed for disease production, the complement can be attained by combining contributions from different members.


npj Vaccines ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Camille Zenobia ◽  
Karla-Luise Herpoldt ◽  
Marcelo Freire

AbstractMucosal tissues act as a barrier throughout the oral, nasopharyngeal, lung, and intestinal systems, offering first-line protection against potential pathogens. Conventionally, vaccines are applied parenterally to induce serotype-dependent humoral response but fail to drive adequate mucosal immune protection for viral infections such as influenza, HIV, and coronaviruses. Oral mucosa, however, provides a vast immune repertoire against specific microbial pathogens and yet is shaped by an ever-present microbiome community that has co-evolved with the host over thousands of years. Adjuvants targeting mucosal T-cells abundant in oral tissues can promote soluble-IgA (sIgA)-specific protection to confer increased vaccine efficacy. Th17 cells, for example, are at the center of cell-mediated immunity and evidence demonstrates that protection against heterologous pathogen serotypes is achieved with components from the oral microbiome. At the point of entry where pathogens are first encountered, typically the oral or nasal cavity, the mucosal surfaces are layered with bacterial cohabitants that continually shape the host immune profile. Constituents of the oral microbiome including their lipids, outer membrane vesicles, and specific proteins, have been found to modulate the Th17 response in the oral mucosa, playing important roles in vaccine and adjuvant designs. Currently, there are no approved adjuvants for the induction of Th17 protection, and it is critical that this research is included in the preparedness for the current and future pandemics. Here, we discuss the potential of oral commensals, and molecules derived thereof, to induce Th17 activity and provide safer and more predictable options in adjuvant engineering to prevent emerging infectious diseases.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Christina A. Rostad ◽  
Neena Kanwar ◽  
Jumi Yi ◽  
Claudia R. Morris ◽  
Jennifer Dien Bard ◽  
...  

Abstract Background Fever is a common symptom in children presenting to the Emergency Department (ED). We aimed to describe the epidemiology of systemic viral infections and their predictive values for excluding serious bacterial infections (SBIs), including bacteremia, meningitis and urinary tract infections (UTIs) in children presenting to the ED with suspected systemic infections. Methods We enrolled children who presented to the ED with suspected systemic infections who had blood cultures obtained at seven healthcare facilities. Whole blood specimens were analyzed by an experimental multiplexed PCR test for 7 viruses. Demographic and laboratory results were abstracted. Results Of the 1114 subjects enrolled, 245 viruses were detected in 224 (20.1%) subjects. Bacteremia, meningitis and UTI frequency in viral bloodstream-positive patients was 1.3, 0 and 10.1% compared to 2.9, 1.3 and 9.7% in viral bloodstream-negative patients respectively. Although viral bloodstream detections had a high negative predictive value for bacteremia or meningitis (NPV = 98.7%), the frequency of UTIs among these subjects remained appreciable (9/89, 10.1%) (NPV = 89.9%). Screening urinalyses were positive for leukocyte esterase in 8/9 (88.9%) of these subjects, improving the ability to distinguish UTI. Conclusions Viral bloodstream detections were common in children presenting to the ED with suspected systemic infections. Although overall frequencies of SBIs among subjects with and without viral bloodstream detections did not differ significantly, combining whole blood viral testing with urinalysis provided high NPV for excluding SBI.


Biology ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 192 ◽  
Author(s):  
Paulina Glowacka ◽  
Lidia Rudnicka ◽  
Olga Warszawik-Hendzel ◽  
Mariusz Sikora ◽  
Mohamad Goldust ◽  
...  

This review updates current knowledge regarding the risk of viral infections, including COVID-19, in patients treated with cyclosporine. We also shortly refer to bacterial infections and parasitic infestations in patients treated with cyclosporin. Cyclosporine is an immunosuppressive drug, which is widely used in medicine, including in the treatment of autoimmune skin diseases in dermatology, rheumatology, ophthalmology and nephrology, and in organ transplantation. A usual concern associated with immunosuppressive treatment is the potential risk of infections. Interestingly, several data indicate a relatively low risk of infections, especially viral infections, in patients receiving cyclosporine. It was shown that cyclosporine exerts an inhibitory effect on the replication of some viruses, or may have a potentially beneficial effect on the disease course in infections. These include hepatitis C, influenza virus, rotavirus, human immunodeficiency virus and coronavirus infections. Available data indicate that cyclosporine may have a beneficial effect on COVID-19, which is caused by the coronavirus SARS-COV2.


Sign in / Sign up

Export Citation Format

Share Document