Electroencephalogram Recording in Humans

Author(s):  
Julia W. Y. Kam ◽  
Todd C. Handy

This chapter provides an elementary introduction to the theory and practical application of electroencephalogram (EEG) recording for the purpose of studying neurocognitive processes. It is aimed at readers who have had little or no experience in EEG data collection, and would like to gain a better understanding of scientific papers employing this methodology or start their own EEG experiment. We begin with a definition of EEG, and a summary of the strengths and limitations of EEG-based techniques. Following this is a description of the basic theory concerning the cellular mechanisms underlying EEG, as well as two types of data generated by EEG recording. We then present a brief summary of the equipment necessary for EEG data acquisition and important considerations for presentation software. Finally, we provide an overview of the protocol for data acquisition and processing, as well as methods for quantifying both EEG and event-related potentials data.

2020 ◽  
Author(s):  
Christoph Reichert ◽  
Stefan Dürschmid ◽  
Mandy V. Bartsch ◽  
Jens-Max Hopf ◽  
Hans-Jochen Heinze ◽  
...  

AbstractObjectiveOne of the main goals of brain-computer interfaces (BCI) is to restore communication abilities in patients. BCIs often use event-related potentials (ERPs) like the P300 which signals the presence of a target in a stream of stimuli. The P300 and related approaches, however, are inherently limited, as they require many stimulus presentations to obtain a usable control signal. Many approaches depend on gaze-direction to focus the target, which is also not a viable approach in many cases, because eye movements might be impaired in potential users. Here we report on a BCI that avoids both shortcomings by decoding spatial target information, independent of gaze shifts.ApproachWe present a new method to decode from the electroencephalogram (EEG) covert shifts of attention to one out of four targets simultaneously presented in the left and right visual field. The task is designed to evoke the N2pc component – a hemisphere lateralized response, elicited over the occipital scalp contralateral to the attended target. The decoding approach involves decoding of the N2pc based on data-driven estimation of spatial filters and a correlation measure.Main resultsDespite variability of decoding performance across subjects, 22 out of 24 subjects performed well above chance level. Six subjects even exceeded 80% (cross-validated: 89%) correct predictions in a four-class discrimination task. Hence, the single-trial N2pc proves to be a component that allows for reliable BCI control. An offline analysis of the EEG data with respect to their dependence on stimulation time and number of classes demonstrates that the present method is also a workable approach for two-class tasks.SignificanceOur method extends the range of strategies for gaze-independent BCI control. The proposed decoding approach has the potential to be efficient in similar applications intended to decode ERPs.


2021 ◽  
Vol 11 (7) ◽  
pp. 835
Author(s):  
Alexander Rokos ◽  
Richard Mah ◽  
Rober Boshra ◽  
Amabilis Harrison ◽  
Tsee Leng Choy ◽  
...  

A consistent limitation when designing event-related potential paradigms and interpreting results is a lack of consideration of the multivariate factors that affect their elicitation and detection in behaviorally unresponsive individuals. This paper provides a retrospective commentary on three factors that influence the presence and morphology of long-latency event-related potentials—the P3b and N400. We analyze event-related potentials derived from electroencephalographic (EEG) data collected from small groups of healthy youth and healthy elderly to illustrate the effect of paradigm strength and subject age; we analyze ERPs collected from an individual with severe traumatic brain injury to illustrate the effect of stimulus presentation speed. Based on these critical factors, we support that: (1) the strongest paradigms should be used to elicit event-related potentials in unresponsive populations; (2) interpretation of event-related potential results should account for participant age; and (3) speed of stimulus presentation should be slower in unresponsive individuals. The application of these practices when eliciting and recording event-related potentials in unresponsive individuals will help to minimize result interpretation ambiguity, increase confidence in conclusions, and advance the understanding of the relationship between long-latency event-related potentials and states of consciousness.


2021 ◽  
Vol 11 (1) ◽  
pp. 48
Author(s):  
John Stein

(1) Background—the magnocellular hypothesis proposes that impaired development of the visual timing systems in the brain that are mediated by magnocellular (M-) neurons is a major cause of dyslexia. Their function can now be assessed quite easily by analysing averaged visually evoked event-related potentials (VERPs) in the electroencephalogram (EEG). Such analysis might provide a useful, objective biomarker for diagnosing developmental dyslexia. (2) Methods—in adult dyslexics and normally reading controls, we recorded steady state VERPs, and their frequency content was computed using the fast Fourier transform. The visual stimulus was a black and white checker board whose checks reversed contrast every 100 ms. M- cells respond to this stimulus mainly at 10 Hz, whereas parvocells (P-) do so at 5 Hz. Left and right visual hemifields were stimulated separately in some subjects to see if there were latency differences between the M- inputs to the right vs. left hemispheres, and these were compared with the subjects’ handedness. (3) Results—Controls demonstrated a larger 10 Hz than 5 Hz fundamental peak in the spectra, whereas the dyslexics showed the reverse pattern. The ratio of subjects’ 10/5 Hz amplitudes predicted their reading ability. The latency of the 10 Hz peak was shorter during left than during right hemifield stimulation, and shorter in controls than in dyslexics. The latter correlated weakly with their handedness. (4) Conclusion—Steady state visual ERPs may conveniently be used to identify developmental dyslexia. However, due to the limited numbers of subjects in each sub-study, these results need confirmation.


2021 ◽  
Vol 11 ◽  
Author(s):  
Entao Zhang ◽  
Xueling Ma ◽  
Ruiwen Tao ◽  
Tao Suo ◽  
Huang Gu ◽  
...  

With the help of event-related potentials (ERPs), the present study used an oddball paradigm to investigate how both individual and target power modulate neural responses to angry expressions. Specifically, participants were assigned into a high-power or low-power condition. Then, they were asked to detect a deviant angry expression from a high-power or low-power target among a series of neutral expressions, while behavioral responses and electroencephalogram (EEG) were recorded. The behavioral results showed that high-power individuals responded faster to detect angry expressions than low-power individuals. The ERP analysis showed that high-power individuals showed larger P3 amplitudes in response to angry expressions than low-power individuals did. Target power increased the amplitudes of the P1, VPP, N3, and P3 in response to angry expressions did, but decreased the amplitudes of the N1 and N170 in response to angry expressions. The present study extended previous studies by showing that having more power could enhance individuals’ neural responses to angry expressions in the late-stage processes, and individuals could show stronger neural responses to angry expressions from high-power persons in both the early‐ and late-stage processes.


2020 ◽  
Author(s):  
Antonino Visalli ◽  
Mariagrazia Capizzi ◽  
Ettore Ambrosini ◽  
Bruno Kopp ◽  
Antonino Vallesi

The brain predicts the timing of forthcoming events to optimize responses to them. Temporal predictions have been formalized in terms of the hazard function, which integrates prior beliefs on the likely timing of stimulus occurrence with information conveyed by the passage of time. However, how the human brain updates prior temporal beliefs is still elusive. Here we investigated electroencephalographic (EEG) signatures associated with Bayes-optimal updating of temporal beliefs. Given that updating usually occurs in response to surprising events, we sought to disentangle EEG correlates of updating from those associated with surprise. Twenty-six participants performed a temporal foreperiod task, which comprised a subset of surprising events not eliciting updating. EEG data were analyzed through a regression-based massive approach in the electrode and source space. Distinct late positive, centro-parietally distributed, event-related potentials (ERPs) were associated with surprise and belief updating in the electrode space. While surprise modulated the commonly observed P3b, updating was associated with a later and more sustained P3b-like waveform deflection. Results from source analyses revealed that surprise encoding comprises neural activity in the cingulo-opercular network (CON). These data provide evidence that temporal predictions are computed in a Bayesian manner, and that this is reflected in P3 modulations, akin to other cognitive domains. Overall, our study revealed that analyzing P3 modulations provides an important window into the Bayesian brain. Data and scripts are shared on OSF: https://osf.io/ckqa5/?view_only=f711e6f878784d4ab94f4b14b31eef46


2018 ◽  
Author(s):  
Jonathan W. P. Kuziek ◽  
Eden X. Redman ◽  
Graeme D. Splinter ◽  
Kyle E. Mathewson

AbstractBackgroundElectroencephalography (EEG) experiments often require several computers to ensure accurate stimulus presentation and data collection. However, this requirement can make it more difficult to perform such experiments in mobile settings within, or outside, the laboratoryNew MethodComputer miniaturisation and increasing processing power allow for EEG experiments to become more portable. Our goal is to show that a Latte Panda, a small Windows 10 computer, can be used to accurately collect EEG data in a similar manner to a laptop. Using a stationary bike, we also demonstrate that the Latte Panda will allow for more portable EEG experiments.ResultsSignificant and reliable MMN and P3 responses, event-related potentials (ERPs) typically associated with auditory oddball tasks, were observed and were consistent when using either the laptop or Latte Panda for EEG data collection. Similar MMN and P3 ERPs were also measured in the sitting and stationary biking conditions while using a Latte Panda for data collection.Comparison with Existing MethodData recorded by the Latte Panda computer produced comparable and equally reliable results to the laptop. As well, similar ERPs during sitting and biking would suggest that EEG experiments can be conducted in more mobile situations despite the increased noise and artefacts associated with muscle movement.ConclusionsOur results show that the Latte Panda is a low-cost, more portable alternative to a laptop computer for recording EEG data. Such a device will further allow for more portable and mobile EEG experimentation in a wider variety of environments.


2021 ◽  
Vol 10 (1) ◽  
pp. 37-44
Author(s):  
Hayri Ertan ◽  
◽  
Suha Yagcioglu ◽  
Alpaslan Yılmaz ◽  
Pekcan Ungan ◽  
...  

An archer requires a well-balanced and highly reproducible release of the bowstring to attain high scores in competition. Recurve archers use a mechanical device called the “clicker” to check the draw length. The fall of the clicker that generates an auditory stimulus should evoke a response in the brain. The purpose of this study is to evaluate the event-related potentials during archery shooting as a response to the fall of the clicker. Fifteen high-level archers participated. An electro cap was placed on the archers’ scalps, and continuous EEG activity was recorded (digitized at 1000 Hz) and stored for off-line analysis. The EEG data were epoched beginning 200 ms before and lasting 800 ms after stimulus marker signals. An operational definition has been developed for classifying hits corresponding to hit and/or miss areas. The hit area enlarged gradually starting from the centre of the target (yellow: 10) to blue (6 score) by creating ten hit area indexes. It is found that the snap of the clicker during archery shooting evokes N1–P2 components of long-latency evoked brain potentials. N1 amplitudes are significantly higher in hit area than that of miss areas for the 2nd and 4th indexes with 95% confidence intervals and 90% confidence intervals for the 1st and 3rd indexes with 90% confidence intervals. We conclude that the fall of the clicker in archery shooting elicits an N1 response with higher amplitude. Although evoked potential amplitudes were higher in successful shots, their latencies were not significantly different from the unsuccessful ones.


2017 ◽  
Vol 5 (4) ◽  
pp. 761-761

Kujawa, A., Proudfit, G. H., Laptook, R., & Klein, D. N. (2015). Early parenting moderates the association between parental depression and neural reactivity to rewards and losses in offspring. Clinical Psychological Science, 3, 503–515. doi:10.1177/2167702614542464 On p. 506, lines 12-13 of EEG data acquisition and processing should read “. . .band-pass filtered with cutoffs of 0.01 and 30 Hz, segmented for each trial 500 ms before feedback onset.” This correction has been made to the online version at http://journals.sagepub.com/doi/full/10.1177/2167702614542464


2021 ◽  
Vol 11 (5) ◽  
pp. 641
Author(s):  
Lin Yu ◽  
Thomas Schack ◽  
Dirk Koester

In this experiment, we explored how unexpected perturbations in the initial (grip posture) and the final action goals (target position) influence movement execution and the neural mechanisms underlying the movement corrections. Participants were instructed to grasp a handle and rotate it to a target position according to a given visual cue. After participants started their movements, a secondary cue was triggered, which indicated whether the initial or final goals had changed (or not) while the electroencephalogram (EEG) was recorded. The results showed that the perturbed initial goals significantly slowed down the reaching action, compared to the perturbed final goals. In the event-related potentials (ERPs), a larger anterior P3 and a larger central-distributed late positivity (600–700 ms) time-locked to the perturbations were found for the initial than for the final goal perturbations. Source analyses found stronger left middle frontal gyrus (MFG) activations for the perturbed initial goals than for the perturbed final goals in the P3 time window. These findings suggest that perturbations in the initial goals have stronger interferences with the execution of grasp-to-rotate movements than perturbations in the final goals. The interferences seem to be derived from both inappropriate action inhibitions and new action implementations during the movement correction.


Sign in / Sign up

Export Citation Format

Share Document