scholarly journals Searching for globular cluster chemical anomalies on the main sequence of a young massive cluster

2020 ◽  
Vol 495 (1) ◽  
pp. 375-382 ◽  
Author(s):  
I Cabrera-Ziri ◽  
J S Speagle ◽  
E Dalessandro ◽  
C Usher ◽  
N Bastian ◽  
...  

ABSTRACT The spectroscopic and photometric signals of the star-to-star abundance variations found in globular clusters seem to be correlated with global parameters like the cluster’s metallicity, mass, and age. Understanding this behaviour could bring us closer to the origin of these intriguing abundance spreads. In this work we use deep HST photometry to look for evidence of abundance variations in the main sequence of a young massive cluster NGC 419 (∼105 M⊙, ∼1.4 Gyr). Unlike previous studies, here we focus on stars in the same mass range found in old globulars (∼0.75–1 M⊙), where light elements variations are detected. We find no evidence for N abundance variations among these stars in the Un − B and U − B colour–magnitude diagrams of NGC 419. This is at odds with the N variations found in old globulars like 47 Tuc, NGC 6352, and NGC 6637 with similar metallicity to NGC 419. Although the signature of the abundance variations characteristic of old globulars appears to be significantly smaller or absent in this young cluster, we cannot conclude if this effect is mainly driven by its age or its mass.

2009 ◽  
Vol 5 (S266) ◽  
pp. 157-160
Author(s):  
D. Yong ◽  
J. Meléndez ◽  
K. Cunha ◽  
A. I. Karakas ◽  
J. E. Norris ◽  
...  

AbstractWe present abundance measurements in the tidally disrupted globular cluster NGC 6712. In this cluster, there are large star-to-star variations of the light elements C, N, O, F and Na. While such abundance variations are seen in every well-studied globular cluster, they are not found in field stars and indicate that clusters like NGC 6712 cannot provide many field stars and/or field stars do not form in environments with chemical-enrichment histories like those of NGC 6712. Preliminary analysis of NGC 5466, another tidally disrupted cluster, suggests little (if any) abundance variation for O and Na and the abundance ratios [X/Fe] are comparable to field stars at the same metallicity. Therefore, globular clusters like NGC 5466 may have been Galactic building blocks.


1989 ◽  
Vol 111 ◽  
pp. 121-140
Author(s):  
Allan Sandage

AbstractIt is shown that the intrinsic spread in the absolute magnitudes of the RR Lyrae variables in a given globular cluster can reach 0.5 magnitudes at a given period or at a given color, due to luminosity evolution away from the zero age horizontal (ZAHB). The size of this intrinsic luminosity spread is largest in clusters of the highest metallicity.The absolute magnitude of the ZAHB itself also differs from cluster to cluster as a function of metallicity, being brightest in clusters of the lowest metallicity. Three independent methods of calibrating the ZAHB RR Lyrae luminosities each show a strong variation of MV(RR) with [Fe/H]. The pulsation equation of P<ρ>0.5 = Q(M,Te, L) used with the observed periods, temperatures, and masses of field and of cluster RR Lyraes gives the very steep luminosity-metallicity dependence of dMv(RR)/d[Fe/H] = 0.42. Main sequence fitting of the color-magnitude diagrams of clusters which have modern main-sequence photometry gives a confirming steep slope of 0.39. A summary of Baade-Wesselink MV(RR) values for field stars determined in four independent recent studies also shows a luminosity-metallicity dependence, but less steep with a slope of dMV(RR)/d[Fe/H] = 0.21.Observations show that the magnitude difference between the main sequence turn-off point and the ZAHB in a number of well observed globular clusters is independent of [Fe/H], and has a stable value of dV = 3.54 with a disperion of only 0.1 magnitudes. Using this fact, the absolute magnitude of the main sequence turn-off is determined in any given globular cluster from the observed apparent magnitude of the ZAHB by adopting any particular MV(RR) = f([Fe/H]) calibration.Ages of the clusters are shown to vary with [Fe/H] by amounts that depend upon the slopes of the MV(RR) = f([Fe/H]) calibrations. The calibrations show that there would be a steep dependence of the age on [Fe/H] if MV(RR) does not depend on [Fe/H]. No dependence of age on metallicity exists if the RR Lyrae luminosities depend on [Fe/H] as dMV(RR)/d[Fe/H] = 0.37. If Oxygen is not enhanced as [Fe/H] decreases, the absolute average age of the globular cluster system is 16 Gyr, independent of [Fe/H], using the steep MV(RR)/[Fe/H] calibration that is favored. If Oxygen is enhanced by [O/Fe] = – 0.14 [Fe/H] + 0.40 for [Fe/H] < –1.0, as suggested from the observations of field subdwarfs, then the age of the globular cluster system decreases to 13 Gyr, again independent of [Fe/H], if the RR Lyrae ZAHB luminosities have a metallicity dependence of dMV(RR)/d[Fe/H] = 0.37.


2008 ◽  
Vol 4 (S258) ◽  
pp. 171-176 ◽  
Author(s):  
Aaron Dotter ◽  
Janusz Kaluzny ◽  
Ian B. Thompson

AbstractAge constraints are most often placed on globular clusters by comparing their CMDs with theoretical isochrones. The recent discoveries of detached, eclipsing binaries in such systems by the Cluster AgeS Experiment (CASE) provide new insights into their ages and, at the same time, provide much-needed tests of stellar evolution models. We describe efforts to model the properties of the detached, eclipsing binary V69 in 47 Tuc and compare age constraints derived from stellar evolution models of V69A and B with ages obtained from fitting isochrones to the cluster CMD. We determine whether or not, under reasonable assumptions of distance, reddening, and metallicity, it is possible to simultaneously constrain the age and He content of 47 Tuc.


2009 ◽  
Vol 5 (S268) ◽  
pp. 119-128
Author(s):  
Angela Bragaglia

AbstractThere is compelling observational evidence that globular clusters (GCs) are quite complex objects. A growing body of photometric results indicate that the evolutionary sequences are not simply isochrones in the observational plane -as believed until a few years ago- from the main sequence, to the subgiant, giant, and horizontal branches. The strongest indication of complexity comes however from the chemistry, from internal dispersion in iron abundance in a few cases, and in light elements (C, N, O, Na, Mg, Al, etc.) in all GCs. This universality means that the complexity is intrinsic to the GCs and is most probably related to their formation mechanisms. The extent of the variations in light elements abundances is dependent on the GC mass, but mass is not the only modulating factor; metallicity, age, and possibly orbit can play a role. Finally, one of the many consequences of this new way of looking at GCs is that their stars may show different He contents.


2009 ◽  
Vol 5 (S268) ◽  
pp. 263-268 ◽  
Author(s):  
Karin Lind ◽  
Francesca Primas ◽  
Corinne Charbonnel ◽  
Frank Grundahl ◽  
Martin Asplund

AbstractThe “stellar” solution to the cosmological lithium problem proposes that surface depletion of lithium in low-mass, metal-poor stars can reconcile the lower abundances found for Galactic halo stars with the primordial prediction. Globular clusters are ideal environments for studies of the surface evolution of lithium, with large number statistics possible to obtain for main sequence stars as well as giants. We discuss the Li abundances measured for >450 stars in the globular cluster NGC 6397, focusing on the evidence for lithium depletion and especially highlighting how the inferred abundances and interpretations are affected by early cluster self-enrichment and systematic uncertainties in the effective temperature determination.


2020 ◽  
Vol 635 ◽  
pp. A93 ◽  
Author(s):  
Andrés E. Piatti ◽  
José G. Fernández-Trincado

We present results based on Dark Energy Camera Legacy Survey (DECaLS) DR8 astrometric and photometric data sets of the Milky Way globular cluster Pal 13. Because of its relatively small size and mass, there is not yet a general consensus on the existence of extra-tidal structures surrounding it. While some previous results suggest the absence of such features, others show that the cluster is under the effects of tidal stripping. We have built a cluster stellar density map from DECaLS g, r magnitudes – previously corrected for interstellar reddening – of stars placed along the cluster main sequence in the color-magnitude diagram. The resulting density map shows nearly smooth contours around Pal 13 out to approximately 1.6 t the most recent estimate of its Jacobi radius, which was derived whilst taking into account the variation along its orbital motion. This outcome favors the presence of stars escaping the cluster, a phenomenon frequently seen in globular clusters that have crossed the Milky Way disk a comparably large number of times. Particularly, the orbital high eccentricity and large inclination angle of this accreted globular cluster could have been responsible for the relatively large amount of lost cluster mass.


1993 ◽  
Vol 137 ◽  
pp. 451-453 ◽  
Author(s):  
Charles R. Proffitt

AbstractThe effects of Coulomb corrections on the evolution of globular clusters stars are discussed. Coulomb corrections alter the equation of state by about 1% in most of the stellar interior, and for stars of fixed initial parameters, this results in an 8% increase in the ZAMS luminosity and an 8% decrease in the age at the main sequence turnoff. Ages for globular clusters measured by comparing to the turnoff luminosity of theoretical isochrones are lowered by ≈ 4% when Coulomb effects are included.


1980 ◽  
Vol 85 ◽  
pp. 423-423
Author(s):  
Gonzalo Alcaino ◽  
William Liller

We present photographic photometry for 1135 stars in the globular cluster NGC 6397, which, at a distance of 2.4 kpc, is most likely the second nearest globular to the Sun. The Racine wedge with the CTIO Yale 1 m telescope (Δm=3. 60 mag), the CTIO 4 m telescope (Δm=6. 83 mag) and the ESO 3.6 m telescope (Δm=3. 87 mag) was used to extend the photoelectric calibration from V≃16.1 to V≃20.7. The main sequence turnoff at V=16.7 and B-V=0.52 with respectively Mv =4.30 and (B-V)o =0.36 yields (m-M)v=12.40 and E(B-V)=0.16. Using the models of Iben and Rood (1970) and the isochrones of Demarque and McClure (1977), we deduce the cluster's age to be 17 × 109 years. This makes this object the oldest of the nine globular clusters with age determination and gives a lower limit to the age of the universe, rendering Ho ≤ 57 km sec−1 Mpc−1 if qo ≥ 0 is assumed. The large age spread of 6 billion years between NGC 6397 and 47 Tuc (the youngest counterpart with age data) indicates both that the protogalaxy underwent a slow collapse phase and that the abundances in globular clusters are lower for the oldest. The fact that the galactocentric distances for these clusters have the narrow range of 6 <R < 13 kpc makes it highly important to secure age data for extremely metal poor globulars far out in the halo.


1996 ◽  
Vol 174 ◽  
pp. 71-80 ◽  
Author(s):  
Giampaolo Piotto ◽  
Adrienne M. Cool ◽  
Ivan R. King

HST makes it possible for the first time to study nearly the entire mass range of globular-cluster main sequences, from the turnoff down almost to the theoretical limit for hydrogen ignition. We present main-sequence luminosity functions (LFs) for four clusters that include stars with M < 0.15M⊙ in all cases. We compare these and other LFs that have been obtained with HST for a total of five globulars to date. Two of the three clusters in the sample that have similar metallicities have nearly identical LFs, while the third is relatively deficient in low mass stars. Possible implications of this finding are briefly discussed. Inferred mass functions vary significantly depending on the mass-luminosity relations that are adopted.


1983 ◽  
Vol 6 ◽  
pp. 129-137 ◽  
Author(s):  
Robert P. Kraft

Obviously such transcendental issues as the helium content and age of the oldest stars depend on whether we are correct in our belief that the answer to this question is “yes” I hardly need say that over the past 40 years compelling affirmative arguments have been developed. Thus, for example, the solar motion of the common subdwarfs can be shown (e.g., Carney 1979) to be essentially identical with that of globular clusters (Kinman 1959) (Table 1), and the Fe-peak metallicities of giants and RR Lyraes in the halo field have been shown to be the same as those in clusters [see, e.g., recent reviews by Kraft (1979) and Freeman and Norris (1981)]. It is hard to believe that we would be incorrect in identifying the main sequence of a globular cluster with the main sequence defined by the trigonometric parallaxes, magnitudes and colors of subdwarfs having the same [Fe/H]. It might seem, therefore, that raising such an issue at this late date is equivalent to discussing a non-existent problem.


Sign in / Sign up

Export Citation Format

Share Document